[1] |
国家卫生健康委疾病预防控制局. 中国居民营养与慢性病状况报告(2020年) [M]. 北京: 人民卫生出版社, 2021.
|
[2] |
范晓轩, 王娜, 朱丽花, 等. 肥胖相关肿瘤研究进展 [J/CD]. 中华肥胖与代谢病电子杂志, 2023, 9(3): 173-178.
|
[3] |
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus [J]. Endocrine Reviews, 2022, 43(2): 314-328.
|
[4] |
Deem JD, Faber CL, Morton GJ. AgRP neurons: Regulators of feeding, energy expenditure, and behavior [J]. FEBS J, 2022, 289(8): 2362-2381.
|
[5] |
Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake [J]. Science, 2023, 381(6665): eabl7398.
|
[6] |
Chen Y, Essner RA, Kosar S, et al. Sustained NPY signaling enables AgRP neurons to drive feeding [J]. Elife, 2019, 8: e46348.
|
[7] |
Quarta C, Claret M, Zeltser LM, et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view [J]. Nat Metab, 2021, 3(3): 299-308.
|
[8] |
Cabral A, Fernandez G, Tolosa MJ, et al. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner [J]. Mol Metab, 2020, 32: 69-84..
|
[9] |
Li MM, Madara JC, Steger JS, et al. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits [J]. Neuron, 2019, 102(3): 653-667. e6.
|
[10] |
Varela L, Horvath TL. Parallel Paths in PVH Control of Feeding [J]. Neuron, 2019, 102(3): 514-516.
|
[11] |
Liu CM, Spaulding MO, Rea JJ, et al. Oxytocin and Food Intake Control: Neural, Behavioral, and Signaling Mechanisms [J]. Int J Mol Sci, 2021, 22(19): 10859.
|
[12] |
Qiu W, Hutch CR, Wang Y, et al. Multiple NTS neuron populations cumulatively suppress food intake [J]. Elife, 2023, 12: e85640.
|
[13] |
sang AH, Nuzzaci D, Darwish T, et al. Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons [J]. Mol Metab, 2020, 42: 101070.
|
[14] |
Chen J, Cheng M, Wang L, et al. A Vagal-NTS Neural Pathway that Stimulates Feeding [J]. Curr Biol, 2020, 30(20): 3986-3998. e5.
|
[15] |
Woodward ORM, Gribble FM, Reimann F, et al. Gut peptide regulation of food intake- evidence for the modulation of hedonic feeding [J]. J Physiol, 2022, 600(5): 1053-1078.
|
[16] |
Marcos JL, Olivares-Barraza R, Ceballo K, et al. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake [J]. Int J Mol Sci, 2023, 24(2): 1468.
|
[17] |
Rossi MA, Stuber GD. Overlapping Brain Circuits for Homeostatic and Hedonic Feeding [J]. Cell Metab, 2018, 27(1): 42-56.
|
[18] |
Tran LT, Park S, Kim SK, et al. Hypothalamic control of energy expenditure and thermogenesis [J]. Exp Mol Med, 2022, 54(4): 358-369.
|
[19] |
Zink AN, Bunney PE, Holm AA, et al. Neuromodulation of orexin neurons reduces diet-induced adiposity [J]. Int J Obes (Lond), 2018, 42(4): 737-745.
|
[20] |
Ruocco C, Malavazos AE, Ragni M, et al. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging [J]. Pharmacol Res, 2023, 195: 106892.
|
[21] |
Liu J, Lin L. Small molecules for fat combustion: targeting thermosensory and satiety signals in the central nervous system [J]. Drug Discov Today, 2019, 24(1): 300-306.
|
[22] |
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut–brain axis in energy and glucose metabolism [J]. Experimental & Molecular Medicine, 2022, 54(4): 377.
|
[23] |
Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity [J]. Nature Reviews. Endocrinology, 2017, 13(6): 338-351.
|
[24] |
Al Massadi O, Nogueiras R, Dieguez C, et al. Ghrelin and food reward [J]. Neuropharmacology, 2019, 148: 131-138.
|
[25] |
Trapp S, Brierley DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment [J]. Br J Pharmacol. 2022, 179(4): 557-570.
|
[26] |
Oertel M, Ziegler CG, Kohlhaas M, et al. GLP-1 and PYY for the treatment of obesity: a pilot study on the use of agonists and antagonists in diet-induced rats [J]. Endocrine Connections, 2024, 13(3): e230398.
|
[27] |
Alonso AM, Cork SC, Phuah P, et al. The vagus nerve mediates the physiological but not pharmacological effects of PYY3-36 on food intake [J]. Molecular Metabolism, 2024, 81: 101895.
|
[28] |
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(11): 655-672.
|
[29] |
de Wouters d'Oplinter A, Rastelli M, Van Hul M, et al. Gut microbes participate in food preference alterations during obesity [J]. Gut Microbes, 2021, 13(1): 1959242.
|
[30] |
Gao K, Mu CL, Farzi A, et al. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain [J]. Adv Nutr, 2020, 11(3): 709-723.
|
[31] |
刘金钢. 减重手术术式选择及对机体代谢的调节 [J]. 肠外与肠内营养, 2020, 27(1): 1-4.
|
[32] |
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation [J]. J Inflamm Res, 2023, 16: 5495-5514.
|
[33] |
Gasmi A, Bjørklund G, Mujawdiya PK, et al. Gut microbiota in bariatric surgery [J]. Crit Rev Food Sci Nutr, 2023, 63(28): 9299-9314.
|