[1] |
Chen K, Shen Z, Gu W, et al. Prevalence of obesity and associated complications in China: A cross-sectional, real-world study in 15.8 million adults [J]. Diabetes Obes Metab, 2023, 25(11): 3390-3399.
|
[2] |
Burns CI, Boghokian A, Soti V. Obesity and Postoperative Cognitive Dysfunction: A Curious Association [J]. Cureus, 2023, 15(7): e42436.
|
[3] |
马微波, 刘悦文, 于莹, 等. 高热量饮食诱导的肠道菌群失调与认知功能障碍关系的研究进展 [J]. 实用老年医学, 2021, 35(04): 405-409.
|
[4] |
Mina T, Yew YW, Ng HK, et al. Adiposity impacts cognitive function in Asian populations: an epidemiological and Mendelian Randomization study [J]. Lancet Reg Health West Pac, 2023, 33: 100710.
|
[5] |
Morledge MD, Pories WJ. Bariatric surgery and cognitive impairment [J]. Obesity (Silver Spring), 2021, 29(8): 1239-1241.
|
[6] |
杨斌, 张丽芝, 陈琦芳, 等. 减重手术改善肥胖症认知功能障碍及其机制 [J]. 生物化学与生物物理进展, 2023, 50(10): 2373-2384.
|
[7] |
Xu J, Gao H, Zhang L, et al. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet [J]. J Pineal Res, 2019, 67(2): e12584.
|
[8] |
唐倩, 黄琪, 梁凤霞. 肥胖引起的胰岛素抵抗对认知障碍的影响机制研究进展 [J]. 华中科技大学学报(医学版), 2022, 51(05): 718-724.
|
[9] |
安金, 李小旋, 任艳艳, 等. 2型糖尿病致认知功能障碍的危险因素 [J]. 国际神经病学神经外科学杂志, 2018, 45(03): 323-327.
|
[10] |
华嵘暄, 高晗, 王博雅, 等. 菌-肠-脑轴与血脑屏障通透性的相关性研究进展 [J]. 世界华人消化杂志, 2022, 30(02): 100-108.
|
[11] |
Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia [J]. Front Aging Neurosci, 2014, 6: 88.
|
[12] |
Lochhead JJ, Yang J, Ronaldson PT, et al. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders [J]. Front Physiol, 2020, 11: 914.
|
[13] |
Zhang Y, Huang B, Yang W, et al. Correlations Between Endocrine Hormones and Cognitive Function in Patients with Obesity: a Cross-sectional Study [J]. Obes Surg, 2022, 32(7): 2299-2308.
|
[14] |
赵筱汐, 麻微微. 肥胖、炎症与认知功能的相关性研究进展 [J]. 生理科学进展, 2018, 49(04): 299-304.
|
[15] |
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition [J]. Front Neurosci, 2021, 15: 761456.
|
[16] |
Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity [J]. Cell, 2014, 157(6): 1339-1352.
|
[17] |
Hata M, Andriessen EMMA, Hata M, et al. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation [J]. Science, 2023, 379(6627): 45-62.
|
[18] |
Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity [J]. Biol Psychiatry, 2015, 77(7): 607-615.
|
[19] |
Saji N, Niida S, Murotani K, et al. Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan [J]. Sci Rep, 2019, 9(1): 1008.
|
[20] |
冷慧层, 刘璇, 尹榕. 肥胖相关认知障碍发病机制研究进展 [J]. 中国现代医药杂志, 2021, 23(05): 101-104.
|
[21] |
Agrawal R, Noble E, Vergnes L, et al. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity [J]. J Cereb Blood Flow Metab, 2016, 36(5): 941-953.
|
[22] |
Ferreiro AL, Choi J, Ryou J, et al. Gut microbiome composition may be an indicator of preclinical Alzheimer's disease [J]. Sci Transl Med, 2023, 15(700): e2984.
|
[23] |
Knight SP, Laird E, Williamson W, et al. Obesity is associated with reduced cerebral blood flow - modified by physical activity [J]. Neurobiol Aging, 2021, 105: 35-47.
|
[24] |
Amen DG, Wu J, George N, et al. Patterns of Regional Cerebral Blood Flow as a Function of Obesity in Adults [J]. J Alzheimers Dis, 2020, 77(3):1331-1337.
|
[25] |
Anand SS, Friedrich MG, Lee DS, et al. Canadian Alliance of Healthy Hearts and Minds (CAHHM) and the Prospective Urban and Rural Epidemiological (PURE) Study Investigators. Evaluation of Adiposity and Cognitive Function in Adults [J]. JAMA Netw Open, 2022, 5(2): e2146324.
|
[26] |
Shen Q, Chen Z, Zhao F, et al. Reversal of prolonged obesity-associated cerebrovascular dysfunction by inhibiting microglial Tak1 [J]. Nat Neurosci, 2020, 23(7): 832-841.
|
[27] |
Zheng Y, Chen ZY, Ma WJ, et al. B Vitamins Supplementation Can Improve Cognitive Functions and May Relate to the Enhancement of Transketolase Activity in A Rat Model of Cognitive Impairment Associated with High-fat Diets [J]. Curr Med Sci, 2021, 41(5): 847-856.
|
[28] |
Chang EH, Chavan SS, Pavlov VA. Cholinergic Control of Inflammation, Metabolic Dysfunction, and Cognitive Impairment in Obesity-Associated Disorders: Mechanisms and Novel Therapeutic Opportunities [J]. Front Neurosci, 2019, 13: 263.
|
[29] |
Mansouri S, Salari AA, Abedi A, et al. Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice [J]. Physiol Behav, 2022, 254: 113919.
|
[30] |
Cai Y, Liu P, Zhou X, et al. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms [J]. Front Cell Infect Microbiol, 2023, 13: 1178399.
|
[31] |
Naomi R, Teoh SH, Rusli RNM, et al. Elateriospermum tapos Yoghurt as a Therapeutic Intervention for Obesity-Associated Cognitive Impairments and Anxiety-like Behaviour in a High Fat Diet Maternal Obese Rat Model [J]. Nutrients, 2023, 15(10): 2312.
|
[32] |
Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis [J]. Neurosci Biobehav Rev, 2017, 72: 87-94.
|
[33] |
Smith KR, Moran TH, Papantoni A, et al. Short-term improvements in cognitive function following vertical sleeve gastrectomy and Roux-en Y gastric bypass: a direct comparison study [J]. Surg Endosc, 2020, 34(5): 2248-2257.
|
[34] |
Ding H, Liu C, Zhang S, et al. Sleeve gastrectomy attenuated diabetes-related cognitive decline in diabetic rats [J]. Front Endocrinol (Lausanne), 2022, 13: 1015819.
|
[35] |
Gunstad J, Strain G, Devlin MJ, et al. Improved memory function 12 weeks after bariatric surgery [J]. Surg Obes Relat Dis, 2011, 7(4): 465-472.
|
[36] |
Alosco ML, Spitznagel MB, Strain G, et al. Improved memory function two years after bariatric surgery [J]. Obesity (Silver Spring), 2014, 22(1): 32-38.
|
[37] |
Smith KR, Steele KE, Papantoni A, et al. The relationship between weight loss and cognitive function in bariatric surgery [J]. Surg Endosc, 2023, 37(3): 1976-1984.
|
[38] |
Li CM, Song JR, Zhao J, et al. The effects of bariatric surgery on cognition in patients with obesity: a systematic review and meta-analysis [J]. Surg Obes Relat Dis, 2022, 18(11): 1323-1338.
|
[39] |
Kelly AS, Ryder JR, Marlatt KL, et al. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity [J]. Int J Obes (Lond), 2016, 40(2): 275-280.
|
[40] |
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation [J]. J Inflamm Res, 2023, 16: 5495-5514.
|
[41] |
Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? [J]. J Biomed Sci, 2016, 23(1): 87.
|
[42] |
Tschoner A, Sturm W, Gelsinger C, et al. Long-term effects of weight loss after bariatric surgery on functional and structural markers of atherosclerosis [J]. Obesity (Silver Spring), 2013, 21(10): 1960-1965.
|
[43] |
Jeon SG, Hong SB, Nam Y, et al. Ghrelin in Alzheimer's disease: Pathologic roles and therapeutic implications [J]. Ageing Res Rev, 2019, 55: 100945.
|
[44] |
李冠亚. 袖状胃切除减重手术调节大脑功能-胃肠激素/菌群机制的研究 [D]. 西安: 西安电子科技大学, 2021.
|
[45] |
Alosco ML, Spitznagel MB, Strain G, et al. Improved serum leptin and ghrelin following bariatric surgery predict better postoperative cognitive function [J]. J Clin Neurol, 2015, 11(1): 48-56.
|
[46] |
Zheng J, Xie Y, Ren L, Qi L, et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer's disease [J]. Mol Metab, 2021, 47: 101180.
|
[47] |
Ren W, Chen J, Wang W, et al. Sympathetic nerve-enteroendocrine L cell communication modulates GLP-1 release, brain glucose utilization, and cognitive function [J]. Neuron, 2024, 112(6): 972-990.
|
[48] |
杜靖, 刘丹丹, 刘秀, 等. 肠道菌群在减重手术后的变化及改善代谢的机制 [J]. 中国普外基础与临床杂志, 2023, 30(3): 279-284.
|
[49] |
Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
|
[50] |
Su SH, Chen M, Wu YF, et al. Fecal microbiota transplantation and short-chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion [J]. CNS Neurosci Ther, 2023, 29(Suppl 1): 98-114.
|
[51] |
Oikonomou G, Altermatt M, Zhang RW, et al. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice [J]. Neuron, 2019, 103(4): 686-701.
|
[52] |
孟倩倩. 肥胖及减重手术对大脑功能和结构网络拓扑属性影响的神经影像研究 [D]. 西安: 西安电子科技大学, 2019.
|
[53] |
Ding H, Liu C, Zhang S, et al. Sleeve gastrectomy attenuated diabetes-related cognitive decline in diabetic rats [J]. Front Endocrinol (Lausanne), 2022, 13: 1015819.
|
[54] |
Saindane AM, Drane DL, Singh A, et al. Neuroimaging correlates of cognitive changes after bariatric surgery [J]. Surg Obes Relat Dis, 2020, 16(1): 119-127.
|