切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 43 -49. doi: 10.3877/cma.j.issn.2095-9605.2023.01.009

综述

减重代谢手术后机体改变的脑–肠–菌轴机制研究进展
孙永兵, 周菁, 温东朋, 和俊雅, 林新贝, 乔琦, 李中林, 张诚, 王志凯, 张建成, 武肖玲, 邹智, 王勇, 李永丽()   
  1. 450003 郑州,郑州大学人民医院医学影像科
    河南省慢病健康管理重点实验室
    河南省人民医院胃肠外科
    河南大学人民医院医学影像科
    河南省人民医院核医学科
    河南省人民医院全科医学科
    河南省人民医院健康管理学科河南省慢病健康管理重点实验室
  • 收稿日期:2022-12-10 出版日期:2023-02-28
  • 通信作者: 李永丽
  • 基金资助:
    河南省中青年卫生健康科技创新人才项目(YXKC2020004); 国家自然科学基金项目资助(82071884); 河南省科技厅科技攻关项目(222102310198); 河南省医学科技攻关计划项目(LHGJ20200060)

Research progress of brain-enteric-bacterial axis mechanism in weight-loss metabolic surgery

Yongbing Sun, Jing Zhou, Dongpeng Wen, Junya He, Xinbei Lin, Qi Qiao, Zhonglin Li, Cheng Zhang, Zhikai Wang, Jiancheng Zhang, Xiaoling Wu, Zhi Zou, Yong Wang, Yongli Li()   

  1. Medical Imaging Department, People's Hospital of Zhengzhou University
    Henan Key Laboratory of Chronic Disease Health Management
    Department of Gastrointestinal Surgery, Henan Provincial People's Hospital
    Department of Medical Imaging, People's Hospital of Henan University
    Department of Nuclear Medicine, Henan Provincial People's Hospital
    Department of General Medicine, Henan Provincial People's Hospital
    Key Laboratory of Chronic Disease Health Management of Henan Province, Department of Health Management, Henan Provincial People's Hospital, Zhengzhou 450003, China
  • Received:2022-12-10 Published:2023-02-28
  • Corresponding author: Yongli Li
引用本文:

孙永兵, 周菁, 温东朋, 和俊雅, 林新贝, 乔琦, 李中林, 张诚, 王志凯, 张建成, 武肖玲, 邹智, 王勇, 李永丽. 减重代谢手术后机体改变的脑–肠–菌轴机制研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 43-49.

Yongbing Sun, Jing Zhou, Dongpeng Wen, Junya He, Xinbei Lin, Qi Qiao, Zhonglin Li, Cheng Zhang, Zhikai Wang, Jiancheng Zhang, Xiaoling Wu, Zhi Zou, Yong Wang, Yongli Li. Research progress of brain-enteric-bacterial axis mechanism in weight-loss metabolic surgery[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2023, 09(01): 43-49.

肥胖症是一种全球流行病并造成巨大的社会和经济负担。减重代谢手术(BMS)作为治疗肥胖症最有效的方法,其机制一直被探索。越来越多的临床研究证实脑−肠−菌轴在肥胖的病理生理学机制中发挥重要作用,但目前缺少该领域的综述。本文对肥胖患者BMS术后神经系统、代谢、内分泌、免疫系统和微生物群组改变的脑−肠−菌轴机制进行综述,以期阐明BMS治疗肥胖的机理并为肥胖症患者术后体重管理提供相关依据与参考。

Obesity is a global epidemic with enormous social and economic burdens. Bariatric metabolic surgery (BMS) is the most effective treatment for obesity, and its mechanism has been explored. More and more clinical studies have confirmed that the brain-enteric-bacterial axis plays an important role in the pathophysiological mechanism of obesity, but there is a lack of review in this field. In this paper, the brain-entero-bacterial axis mechanism of changes in the nervous system, metabolism, endocrine system, immune system and microbial group in patients with obesity after BMS was reviewed, in order to clarify the mechanism of BMS treatment for obesity and provide relevant basis and reference for postoperative weight management in patients with obesity.

图1 脑−肠−菌轴作用机制
图2 BMS术后机体改变
[1]
Wang Y, Zhao L, Gao L, et al. Health policy and public health implications of obesity in China [J]. Lancet Diabetes Endocrinol, 2021, 9(7): 446-461.
[2]
Gadelha Bezerra Silva B, Veras Oliveira A, Almeida de Sousa Jucá M, et al. Management of gastric ectopic pancreas identified in preoperative evaluation of bariatric surgery - A case report [J]. Int J Surg Case Rep, 2020, 77: 353-356.
[3]
Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects [J]. N Engl J Med, 2007, 357(8): 741-752.
[4]
Martin C R, Osadchiy V, Kalani A, et al. The Brain-Gut-Microbiome Axis [J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 133-148.
[5]
Gupta A, Osadchiy V, Mayer E A. Brain-gut-microbiome interactions in obesity and food addiction [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(11): 655-672.
[6]
曾钊, 刘娟. 中共中央国务院印发《"健康中国2030"规划纲要》 [J]. 中华人民共和国国务院公报, 2016, 32: 5-20.
[7]
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 [J]. Nature, 2009, 461(7268): 1282-1286.
[8]
Nuzzo A, Czernichow S, Hertig A, et al. Prevention and treatment of nutritional complications after bariatric surgery [J]. Lancet Gastroenterol Hepatol, 2021, 6(3): 238-251.
[9]
Garruti G, De Fazio M, Capuano P, et al. Exercise and apulian hypocaloric diet affect adipokine changes and gastric banding-induced weight loss: A prospective study on severe obese subjects [J]. Ann Med Surg (Lond), 2020, 52:10-5.
[10]
Zafar A, Khatri IA. An overview of complications affecting the Central Nervous System following bariatric surgery [J]. Neurosciences (Riyadh), 2018, 23(1): 4-12.
[11]
Ochner C N, Gibson C, Shanik M, et al. Changes in neurohormonal gut peptides following bariatric surgery [J]. Int J Obes (Lond), 2011, 35(2): 153-166.
[12]
Guo Y, Huang ZP, Liu CQ, et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery [J]. Eur J Endocrinol, 2018, 178(1): 43-56.
[13]
Li G, Ji G, Hu Y, et al. Reduced plasma ghrelin concentrations are associated with decreased brain reactivity to food cues after laparoscopic sleeve gastrectomy [J]. Psychoneuroendocrinology, 2019, 100: 229-236.
[14]
Frank S, Wilms B, Veit R, et al. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery [J]. Int J Obes (Lond), 2014, 38(3): 341-348.
[15]
Angelidi AM, Belanger MJ, Kokkinos A, et al. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy [J]. Endocr Rev, 2022, 43(3): 507-557.
[16]
Battineni G, Sagaro GG, Chintalapudi N, et al. Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (CVD) [J]. Int J Mol Sci, 2021, 22(9):4798.
[17]
De Lima-Júnior JC, Velloso LA, Geloneze B. The Obese Brain--Effects of Bariatric Surgery on Energy Balance Neurocircuitry [J]. Curr Atheroscler Rep, 2015, 17(10): 57.
[18]
van de Sande-Lee S, Pereira FR, Cintra DE, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects [J]. Diabetes, 2011, 60(6): 1699-1704.
[19]
Zeighami Y, Iceta S, Dadar M, et al. Spontaneous neural activity changes after bariatric surgery: A resting-state fMRI study [J]. Neuroimage, 2021, 241: 118419-118429.
[20]
Berthoud HR, Shin A C, Zheng H. Obesity surgery and gut-brain communication [J]. Physiol Behav, 2011, 105(1): 106-119.
[21]
Stefanidis A, Oldfield BJ. Neuroendocrine mechanisms underlying bariatric surgery: Insights from human studies and animal models [J]. J Neuroendocrinol, 2017, 29(10): 10.
[22]
Ionut V, Burch M, Youdim A, et al. Gastrointestinal hormones and bariatric surgery-induced weight loss [J]. Obesity (Silver Spring), 2013, 21(6): 1093-1103.
[23]
Almeida P P, Valdetaro L, Thomasi B B M, et al. High-fat diets on the enteric nervous system: Possible interactions and mechanisms underlying dysmotility [J]. Obes Rev, 2022, 23(4): e13404.
[24]
Bravo J A, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve [J]. Proc Natl Acad Sci USA, 2011, 108(38): 16050-16055.
[25]
Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice [J]. Gastroenterology, 2011, 141(2): 599-609, e1-3.
[26]
Fried S, Wemelle E, Cani PD, et al. Interactions between the microbiota and enteric nervous system during gut-brain disorders [J]. Neuropharmacology, 2021, 197: 108721.
[27]
刘金钢. 减重手术术式选择及对机体代谢的调节 [J]. 肠外与肠内营养, 2020, 27(1): 1-4.
[28]
Yu H, Li Q, Zhang M, et al. Decreased Leptin Is Associated with Alterations in Thyroid-Stimulating Hormone Levels after Roux-en-Y Gastric Bypass Surgery in Obese Euthyroid Patients with Type 2 Diabetes [J]. Obes Facts, 2019, 12(3): 272-280.
[29]
Hu J, Wang M, Zhou Y, et al. Bariatric Surgery in Rats Upregulates FSP27 Expression in Fat Tissue to Affect Fat Hydrolysis and Metabolism [J]. Biomed Res Int, 2019, 2019(8):1-11.
[30]
Dadson P, Hannukainen JC, Din MU, et al. Brown adipose tissue lipid metabolism in morbid obesity: Effect of bariatric surgery-induced weight loss [J]. Diabetes Obes Metab, 2018, 20(5): 1280-1288.
[31]
Chen Y, Yang J, Nie X, et al. Effects of Bariatric Surgery on Change of Brown Adipocyte Tissue and Energy Metabolism in Obese Mice [J]. Obes Surg, 2018, 28(3): 820-830.
[32]
刘娟, 郑喜兰. 肥胖病人减重代谢手术后微量营养素缺乏症的研究进展 [J]. 全科护理, 2022, 20(03): 345-350.
[33]
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota [J]. Cell Mol Life Sci, 2016, 73(4): 737-755.
[34]
Namgung U, Kim KJ, Jo BG, et al. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats [J]. J Neuroinflammation, 2022, 19(1): 33.
[35]
Hatoum IJ, Stylopoulos N, Vanhoose AM, et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery [J]. J Clin Endocrinol Metab, 2012, 97(6): E1023-1031.
[36]
Mumphrey MB, Patterson LM, Zheng H, et al. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats [J]. Neurogastroenterol Motil, 2013, 25(1): e70-79.
[37]
Valenzano A, Tartaglia N, Ambrosi A, et al. The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System [J]. J Clin Med, 2020, 9(10):3327-3337.
[38]
Gupta A, Miegueu P, Lapointe M, et al. Acute post-bariatric surgery increase in orexin levels associates with preferential lipid profile improvement [J]. PLoS One, 2014, 9(1): e84803.
[39]
Cigdem Arica P, Kocael A, Tabak O, et al. Plasma ghrelin, leptin, and orexin-A levels and insulin resistance after laparoscopic gastric band applications in morbidly obese patients [J]. Minerva Med, 2013, 104(3): 309-316.
[40]
Egeberg A, Sørensen JA, Gislason GH, et al. Incidence and Prognosis of Psoriasis and Psoriatic Arthritis in Patients Undergoing Bariatric Surgery [J]. JAMA Surg, 2017, 152(4): 344-349.
[41]
Frasca D, Diaz A, Romero M, et al. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue [J]. PLoS One, 2018, 13(5): e0197472.
[42]
Cuellar-Tamez RX, Villarreal-Calderon J R, Rubio-Infante N, et al. Bariatric surgery-induced weight loss reduces B cell activating cytokines and IgG immunoglobulins related to autoimmunity [J]. Surg Endosc, 2021, 35(9): 5147-5158.
[43]
李淑婷, 尹星琪, 赵冬, 等. 减重代谢手术的减重机制研究进展 [J]. 中国临床医生杂志, 2021, 49(3): 273-275.
[44]
Chen J, Haase N, Haange SB, et al. Roux-en-Y gastric bypass contributes to weight loss-independent improvement in hypothalamic inflammation and leptin sensitivity through gut-microglia-neuron-crosstalk [J]. Mol Metab, 2021, 48: 101214.
[45]
Guo Y, Liu CQ, Liu GP, et al. Roux-en-Y gastric bypass decreases endotoxemia and inflammatory stress in association with improvements in gut permeability in obese diabetic rats [J]. J Diabetes, 2019, 11(10): 786-793.
[46]
Chen H, Qian L, Lv Q, et al. Change in gut microbiota is correlated with alterations in the surface molecule expression of monocytes after Roux-en-Y gastric bypass surgery in obese type 2 diabetic patients [J]. Am J Transl Res, 2017, 9(3): 1243-1254.
[47]
Sanchez M, Darimont C, Panahi S, et al. Effects of a Diet-Based Weight-Reducing Program with Probiotic Supplementation on Satiety Efficiency, Eating Behaviour Traits, and Psychosocial Behaviours in Obese Individuals [J]. Nutrients, 2017, 9(3): 284-300.
[48]
Roth W, Zadeh K, Vekariya R, et al. Tryptophan Metabolism and Gut-Brain Homeostasis [J]. Int J Mol Sci, 2021, 22(6): 2973-2994.
[49]
Kessler RM, Hutson PH, Herman BK, et al. The neurobiological basis of binge-eating disorder [J]. Neurosci Biobehav Rev, 2016, 63: 223-238.
[50]
Dalmas E, Rouault C, Abdennour M, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction [J]. Am J Clin Nutr, 2011, 94(2): 450-458.
[51]
Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota [J]. Genome Med, 2016, 8(1): 67-69.
[52]
Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism [J]. Nat Commun, 2014, 5(1): 3611-3621.
[53]
Dong TS, Mayer EA, Osadchiy V, et al. A Distinct Brain-Gut-Microbiome Profile Exists for Females with Obesity and Food Addiction [J]. Obesity (Silver Spring), 2020, 28(8): 1477-1486.
[54]
Hong J, Bo T, Xi L, et al. Reversal of Functional Brain Activity Related to Gut Microbiome and Hormones After VSG Surgery in Patients With Obesity [J]. J Clin Endocrinol Metab, 2021, 106(9): e3619-e3633.
[55]
Jennis M, Cavanaugh CR, Leo GC, et al. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo [J]. Neurogastroenterol Motil, 2018, 30(2): 13178.
[56]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis [J]. Cell, 2015, 161(2): 264-276.
[57]
Altieri MS, Irish W, Pories WJ, et al. Examining the Rates of Obesity and Bariatric Surgery in the United States [J]. Obes Surg, 2021, 31(11): 4754-4760.
[1] 聂锋, 李婉珍. 不打针不吃药不输液徒手治疗糖尿病一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 354-354.
[2] 张忠涛. 单吻合口胃旁路术[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 20-20.
[3] 康建省, 李涛, 韩晓凯, 侯佳超. 腹腔镜胃袖状切除术[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 21-21.
[4] 韦笑韩, 任振, 潘晨, 吴立胜. 减重代谢手术后复胖原因分析及治疗进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 172-178.
[5] 刘雪云, 范颖, 姚爱军, 张胜苗, 吕亚妮, 张冰清, 张晓宇, 刘恒. 基于微信小程序的个体化、全程护理干预对孕妇孕期体重及分娩结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 455-460.
[6] 苏慧媛, 宋洪涛, 高巍, 武忠. 针刺治疗单纯性肥胖的系统评价和Meta分析[J]. 中华针灸电子杂志, 2023, 12(03): 123-128.
[7] 董正妮, 张珑耀. 穴位埋线疗法治疗单纯性肥胖的研究进展[J]. 中华针灸电子杂志, 2023, 12(02): 57-61.
[8] 高文星, 刘浩, 赵稳, 李丁昌, 陈鹏, 金露佳, 刘先强, 董光龙. 减重手术后慢性腹痛的原因与对策[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 149-154.
[9] 刘澳, 周菁, 孙永兵, 和俊雅, 林新贝, 乔琦, 李中林, 张建成, 武肖玲, 邹智, 胡扬喜, 肖新广, 吕雪, 李昊, 李永丽. 减重代谢手术后神经影像改变与认知功能评估的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 203-208.
[10] 陈笑梅, 陈文辉, 赵宛鄂, 郭婕, 苏超, 付志菊, 杨华, 董志勇, 王存川. 可吞咽自吸收新型胃内球囊治疗轻度肥胖症:一例病例报告[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 215-217.
[11] 中国医师协会外科医师分会肥胖和糖尿病外科医师委员会, 中国肥胖代谢外科研究协作组. 肥胖代谢外科个案管理术前临床路径中国专家共识(2023版)[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 73-82.
[12] 闫海, 邵怡凯, 姚琪远. 减重代谢外科在心血管疾病防治中的临床意义与前景[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 137-142.
[13] 杨宁琍, 花红霞, 林睿, 梁辉. 基于生态瞬时评估的减重代谢术后患者信息化体重管理模式构建及应用[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 17-21.
[14] 赵稳, 刘浩, 武现生, 金露佳, 陈鹏, 李丁昌, 高文星, 刘先强, 董光龙. 胃束带侵蚀致复杂食道及胃瘘的处理——一例病例报告及文献回顾[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 62-67.
[15] 伍振鹏, 乔钰涵, 向林, 江云颂, 彭居正, 吴丽娜, 程吕佳, 关炳生, 庄子康, 杨景哥. 腹腔镜袖状胃切除术中胃窦切缘与幽门的距离对术后胃食管反流病及减重效果的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 4-11.
阅读次数
全文


摘要