切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 127 -132. doi: 10.3877/cma.j.issn.2095-9605.2024.02.009

青年专家论坛

减重手术治疗肥胖患者胰岛素抵抗的研究进展
崔磊1, 徐东升1,()   
  1. 1. 150000 哈尔滨,哈尔滨市第一医院减重与代谢外科中心
  • 收稿日期:2024-03-09 出版日期:2024-05-30
  • 通信作者: 徐东升

Progress in the research of bariatric surgery for insulin resistance in patients with obesity

lei Cui1, Dongsheng Xu1,()   

  1. 1. Center of Obesity and Metabolic Diseases, the First Hospital of Harbin, Harbin 150000, China
  • Received:2024-03-09 Published:2024-05-30
  • Corresponding author: Dongsheng Xu
引用本文:

崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.

lei Cui, Dongsheng Xu. Progress in the research of bariatric surgery for insulin resistance in patients with obesity[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(02): 127-132.

减重代谢手术对治疗肥胖症引起的胰岛素抵抗的疗效已得到广泛认可,成为治疗胰岛素抵抗和2型糖尿病的有效手段之一。但随着手术方式的不断创新,评价其治疗胰岛素抵抗的疗效需要更多临床研究和证据。高胰岛素正糖钳夹技术、胰岛素抑制试验及空腹状态指数等可有效评估胰岛素抵抗的情况;减重术后患者的膳食习惯改变、脂肪组织及脂肪细胞因子的改变、胃肠激素水平和肠道菌群的改变是其胰岛素抵抗改善的主要机制。因此,本文结合国内外文献对减重手术的方式、胰岛素抵抗的测量方法和减重术后胰岛素抵抗改善的机制进行综述,为减重手术治疗胰岛素抵抗的疗效提供有效的评价方法。

The effect of bariatric surgery on insulin resistance caused by obesity has been widely recognized as one of the effective methods in the treatment of insulin resistance and type 2 diabetes mellitus. However, more clinical studies and evidence are needed to evaluate the efficacy of insulin resistance with the continuous innovation of surgical methods. Therefore, we review the methods of bariatric surgery, the measurement of insulin resistance and the mechanism of improvement of insulin resistance after bariatric surgery, to provide an effective method for evaluating the therapeutic effect of bariatric surgery on insulin resistance.

[1]
Sun Hong, Saeedi Pouya, Karuranga Suvi, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 [J]. Diabetes Res Clin Pract, 2022, 183: 109-119.
[2]
Sun X, Yan AF, Shi Z, et al. Health consequences of obesity and projected future obesity health burden in China [J]. Obesity (Silver Spring), 2022, 30(9): 1724-1751.
[3]
Wang Y, Zhao L, Gao L, et al. Health policy and public health implications of obesity in China [J]. Lancet Diabetes Endocrinol, 2021, 9(7): 446-461.
[4]
邹大进. 消除胰岛素抵抗,去除慢病的"共同土壤" [J]. 中华全科医师杂志, 2022, 21(11): 1007-1012.
[5]
中华医学会糖尿病学分会. 胰岛素抵抗相关临床问题专家共识(2022版) [J]. 中华糖尿病杂志, 2022, 14(12): 1368-1379.
[6]
Syn NL, Cummings DE, Wang LZ, et al. Association of meta-bolic-bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants [J]. Lancet, 2021, 397(10287): 1830-1841.
[7]
Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: state of the art [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(3): 160-169.
[8]
Ikramuddin S, Korner J, Lee WJ, et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study [J]. JAMA 2018, 319(3): 266-278.
[9]
Domínguez Alvarado GA, Otero Rosales MS, Cala Duran JC, et al. The effect of bariatric surgery on metabolic syndrome: a retrospective cohort study in Colombia [J]. Health Sci Rep, 2023, 6(2): e1090.
[10]
Sha Y, Huang X, Ke P, et al. Laparoscopic Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy for Type 2 Diabetes Mellitus in Nonseverely Obese Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials [J]. Obes Surg, 2020, 30(5): 1660-1670
[11]
Jin ZL, Liu W. Progress in treatment of type 2 diabetes by bariatric surgery[J]. World J Diabetes, 2021, 12(8): 1187-1199
[12]
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes:5 year follow-up of an open-label, single-centre, randomised controlled trial [J]. Lancet, 2015, 386(9997): 964-973.
[13]
Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes [J]. N Engl J Med, 2012, 366(17): 1567-1576.
[14]
Hofso D, Fatima F, Borgeraas H, et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): a single-centre,triple-blind, randomised controlled trial [J]. Lancet Diabetes Endocrinol, 2019, 7(12): 912-924.
[15]
Aminian A, Vidal J, Salminen P, et al. Late relapse of diabetes after bariatric surgery: not rare, but not a failurel [J]. Diab Care, 2020, 43(3): 534-540.
[16]
Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes-5-year outcomesl [J]. N Engl J Med, 2017, 376(7): 641-651.
[17]
张鹏, 张忠涛. 中国腹腔镜减重与代谢外科术式选择与原则 [J/CD]. 中华普外科手术学杂志(电子版), 2023, 17(1): 6-10.
[18]
Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery survey 2018: similarities and disparities among the 5 IFSO chapters [J]. Obes Surg, 2021, 31(5): 1937-1948.
[19]
Alghamdi S, Mirghani H, Alhazmi K, et al. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy effects on obesity comorbidities: a systematic review and metaanalysis [J]. Front Surg, 2022, 9: 953-804.
[20]
Salminen P, Grönroos S, Helmiö M, et al. Effect of laparoscopic sleeve gastrectomy vs Roux-en-Y gastric bypass on weight loss, comorbidities, and reflux at 10 years in adult patients with obesity: the SLEEVEPASS randomized clinical trial [J]. JAMA Surg, 2022, 157(8): 656-666.
[21]
中国医师协会外科医师分会肥胖和糖尿病外科医师委员会, 中国肥胖代谢外科研究协作组. 中国肥胖代谢外科数据库: 2022年度报告[J]. 中华肥胖与代谢病电子杂志, 2023, 9(2): 83-91.
[22]
De Luca M, Piatto G, Merola G, et al. IFSO update position statement on one anastomosis gastric bypass (OAGB) [J]. Obes Surg, 2021, 31(7): 3251-3278
[23]
Level Luis, Rojas Alejandro,Piñango Silvia,et al.One anastomosis gastric bypass vs. Roux-en-Y gastric bypass:a 5-year follow-up prospective randomized trial [J]. Langenbecks Arch Surg, 2021,406(1): 171-179.
[24]
Kermansaravi M, Shahmiri SS, DavarpanahJazi AH, et al. One anastomosis/mini-gastric bypass (OAGB/MGB) as revisional surgery following primary restrictive bariatric procedures: a systematic review and meta-analysis [J]. ObesSurg, 2021, 31(1): 370-383
[25]
刘金钢, 胡敬尧, 陈孚. 减重代谢手术方式的改进与发展方向 [J]. 中华消化外科杂志, 2023, 22(1): 94-99.
[26]
Heinonen S, Saarinen T, Meriläinen S, et al. Roux-en-Y versus one-anastomosis gastric bypass (RYSA study): weight loss, metabolic improvements, and nutrition at 1 year after surgery, a multicenter randomized controlled trial [J]. Obesity (Silver Spring), 2023, 31(12): 2909-2923.
[27]
Surve A, Cottam D, Medlin W, et al. Long-term outcomesof primary single anastomosis duodeno-ileal bypass withsleeve gastrectomy (SADI-S) [J]. Surg Obes Relat Dis, 2020, 16(11): 1638-1646.
[28]
Seki Y, Kasama K, Tanaka T, et al. Early gastric cancer successfully treated by endoscopic submucosal resection 1 year after laparoscopic sleeve gastrectomy with duodenaljejunal bypass [J]. Asian J Endosc Surg, 2019, 12(3): 357-361.
[29]
Lin S, Li C, Guan W, et al. Three-year outcomes of sleeve gastrectomy plus jejunojejunal bypass: a retrospective casematched study with sleeve gastrectomy and gastric bypass in Chinese patients with BMI≥35 kg/m2 [J]. Obes Surg, 2021, 31(8): 3525-3530.
[30]
Topart P, Becouarn G, Finel JB. Comparison of 2-year results of Roux-en-Y gastric bypass and transit bipartition with sleeve gastrectomy for superobesity [J]. Obes Surg, 2020, 30(9): 3402-3407.
[31]
Ovalle F. Clinical approach to the patient with diabetes mellitus and very high insulin requirements [J]. Diabetes Res Clin Pract, 2010, 90(3): 231-242.
[32]
中华医学会糖尿病学分会胰岛素抵抗学组(筹). 胰岛素抵抗评估方法和应用的专家指导意见 [J]. 中华糖尿病杂志, 2018, 10(6): 377-385.
[33]
Kullmann S, Valenta V, Wagner R, et al. Brain insulin sensitivity is linked to adiposity and body fat distribution [J]. Nat Commun, 2020, 11(1): 1841.
[34]
Rebelos E, Nummenmaa L, Dadson P, et al. Brain insulin sensitivity is linked to body fat distribution-the positron emission tomography perspective [J]. Eur J Nucl Med Mol Imaging, 2021, 48(4): 966-968
[35]
Pournaras DJ, Nygren J, Hagstrom-Toft E, et al. Improved glucose metabolism after gastric bypass: evolution of the paradigm [J]. Surg Obes Relat Dis, 2016, 12(8): 1457-1465.
[36]
Bojsen-Moller KN, Dirksen C, Jorgensen NB, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass [J]. Diabetes, 2014, 63(5): 1725-1737.
[37]
Pop LM, Mari A, Zhao TJ, et al. Roux-en-Y gastric bypass compared with equivalent diet restriction: mechanistic insights into diabetes remission [J]. Diab Obes Metab, 2018, 20(7): 1710-1721.
[38]
Milton-Laskibar I, Aguirre L, MacarullaMT, et al. Comparative effects of energy restriction and resveratrol intake on glycemic control improvement [J]. Biofactors, 2017, 43(3): 371-378.
[39]
Pardo R, Vila M, Cervela L, et al. Calorie restriction prevents diet-induced insulin resistance independently of PGC-1-driven mitochondrial biogenesis in white adipose tissue [J]. FASEB J, 2019, 33(2): 2343-2358.
[40]
Steven S, Hollingsworth KG, Small PK, et al. Calorie restriction and not glucagon-like peptide-1 explains the acute improvement in glucose control after gastric bypass in Type 2 diabetes [J]. Diabet Med, 2016, 33(12): 1723-1731.
[41]
Jackson HT, Anekwe C, Chang J,et al. The Role of Bariatric Surgery onDiabetes and Diabetic Care Compliance [J]. Curr Diab Rep, 2019, 19(11): 125
[42]
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease [J]. Nat Rev Endocrinol, 2019, 15(9): 507-524.
[43]
Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss [J]. Obes Surg, 2005, 15(4): 462-473.
[44]
Benedix F, Westphal S, Patschke R et al. Weight loss and changes in salivary ghrelin and adiponectin: comparison between sleeve gastrectomy and Roux-en-Y gastric bypass and gastric banding [J]. Obes Surg, 2011, 21(5): 616-624.
[45]
Finucane FM, Luan J, Wareham NJ et al. Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals [J]. Diabetologia, 2009, 52(11): 2345-2349.
[46]
Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance [J]. J Clin Invest, 2006, 116(7): 1793-1801.
[47]
Perez-Pevida B, Escalada J, Miras AD, et al. Mechanisms underlying type 2 diabetes remission after metabolic surgery [J]. Front Endocrinol, 2019, 10: 641.
[48]
Albaugh VL, Banan B, Antoun J, et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery [J].Gastroenterology, 2019, 156(4): 1041-1051.
[49]
Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery [J]. Endocrinology, 2017, 158(12): 4139-4151.
[50]
Wallenius V, Elias E, Elebring E, et al. Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal keto-genesis: a mechanism targeted by Roux-en-Y gastric bypass surgery but notby preoperative very-low-calorie diet [J]. Gut, 2020, 69(8): 1423-1431.
[51]
Shi YC, Loh K, Bensellam M, et al. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice [J]. Endocrinology, 2015, 156(9): 3122-3136.
[52]
Farey JE, Preda TC, Fisher OM, et al. Effect of Laparoscopic Sleeve Gastrectomy on Fasting Gastrointestinal, Pancreatic,and Adipose-Derived Hormones and on Non-Esterified Fatty Acids [J]. Obes Surg, 2017, 27(2): 399-407.
[53]
McCarty TR, Jirapinyo P, Thompson CC. Effect of sleeve gastrectomy on ghrelin, GLP-1, PYY, and GIP gut hormones: a systematic review and meta-analysis [J]. Ann Surg, 2020, 272(1): 72-80.
[54]
Albaugh VL, Banan B, Antoun J, et al. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery [J]. Gastroenterology, 2019, 156(4): 1041-1051.
[55]
Ding L, Sousa KM, Jin L, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice [J]. Hepatology, 2016, 64(3): 760-773.
[56]
Ahlin S, Cefalu C, Bondia-Pons I, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity [J]. Br J Surg, 2019, 106(9): 1178-1186.
[57]
Browning MG, Pessoa BM, Khoraki J, Campos GM. Changes in bile acid metabolism, transport, and signaling as central drivers for metabolic improve-ments after bariatric surgery [J]. Curr Obes Rep, 2019, 8(2): 175-184.
[58]
Wang W, Cheng Z, Wang Y, et al. Role of bile acids in bariatric surgery [J]. Front Physiol, 2019, 10: 374.
[59]
Ciobârcă D, Cătoi AF, Copăescu C, et al. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status [J]. Nutrients, 2020,12(1): 235.
[60]
Cӑtoi AF, Vodnar DC, Corina A, et al. GutMicrobiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives [J]. Curr Pharm Des, 2019, 25: 2038-2050.
[61]
Wang MF, Li LP, Chen YZ, et al. Role of Gut Microbiome and Microbial Metabolites in Alleviating Insulin Resistance After Bariatric Surgery [J]. Obes Surg, 2021, 31(1): 327-336.
[62]
Liou AP, Paziuk M, Luevano JM Jr, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity [J]. Sci Transl Med, 2013, 5(178): 178ra41.
[63]
de Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time [J]. Gut, 2020, 69(3): 502-512.
[64]
Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition [J]. Cell Metab, 2017, 26(4): 611-619.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[3] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[4] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[5] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[6] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[7] 颜帅, 胡旭, 苟晓梅, 谢铭. 腹腔镜胃袖状切除术后并发症处置策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 220-224.
[8] 陆文琪, 赵艳茹, 李焕娣, 樊欣娜, 王佳, 李萍. 2型糖尿病患者血清SMAD2和SOX6表达及其与蛋白尿的关系[J]. 中华肾病研究电子杂志, 2024, 13(03): 145-151.
[9] 孙秀芹, 高美娟, 张琼阁, 吕凯敏, 王宏宇. 京西地区无心血管病史2型糖尿病中老年人群患心血管疾病的危险因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(03): 245-252.
[10] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[11] 颜宥彤, 赵锐, 万谦益, 张贵祥, 沈弘毅, 程中, 陈亿. GLP-1受体激动剂——司美格鲁肽的应用及安全性[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 88-93.
[12] 周彪, 李政奇, 孟化. 肥胖与内镜下减重治疗研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 100-107.
[13] 王婉杰, 宋文超, 王键, 倪良晨, 洪健, 朱孝成, 姚立彬. 肥胖与中枢神经系统调控的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 108-112.
[14] 陆远欣, 龚莉琳, 曾梦华. 肥胖与非酒精性脂肪肝研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 113-119.
[15] 庄建彬, 杨明建. 肥胖与结直肠癌的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 120-126.
阅读次数
全文


摘要