切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2024, Vol. 10 ›› Issue (04) : 276 -282. doi: 10.3877/cma.j.issn.2095-9605.2024.04.008

青年专家论坛

肌少性肥胖与非酒精性脂肪性肝病间的关系以及研究进展
张杨杨1, 项楚淇2, 朱满生3,()   
  1. 1.510515 广州,南方医科大学口腔医学院
    2.510515 广州,南方医科大学第一临床医学院
    3.510515 广州,南方医科大学南方医院普通外科·广东省胃肠肿瘤精准微创诊疗重点实验室
  • 收稿日期:2024-03-28 出版日期:2024-11-30
  • 通信作者: 朱满生
  • 基金资助:
    国家自然科学基金项目(82103150)广东省胃肠肿瘤精准微创诊疗重点实验室(2020B121201004)广州地区临床重大技术项目(2023P-ZD01)

Research progress and the relationship between nonalcoholic fatty liver disease and sarcopenic obesity

Yangyang Zhang1, Chuqi Xiang2, Mansheng Zhu3,()   

  1. 1.School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
    2.the First College of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
    3.Guangdong Provincial Key Laboratory of Presicion Medicine for Gastrointestinal Tumor, Department of general surgery,Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2024-03-28 Published:2024-11-30
  • Corresponding author: Mansheng Zhu
引用本文:

张杨杨, 项楚淇, 朱满生. 肌少性肥胖与非酒精性脂肪性肝病间的关系以及研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 276-282.

Yangyang Zhang, Chuqi Xiang, Mansheng Zhu. Research progress and the relationship between nonalcoholic fatty liver disease and sarcopenic obesity[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(04): 276-282.

非酒精性脂肪性肝病(NAFLD)是内脏脂肪过度堆积的重要表现之一,也是导致终末期肝硬化和肝细胞癌的重要原因。部分NAFLD患者合并肌少性肥胖(SO),尤其是老年患者。随着老龄化加剧,SO作为肥胖症的特殊类型而备受关注。从病理生理学角度看,SO与NAFLD有多种共同影响因素,如炎症、衰老、胰岛素抵抗、肌因子等。然而,其中的相互作用关系尚不清晰。减重代谢手术是改善机体糖脂代谢的有效手段,也能使老年肥胖患者获益。明确SO的发病机制及其代谢紊乱过程,是评估减重代谢手术在治疗SO可行性的重要前提。本文就SO和NAFLD的发病机制来分析SO和NAFLD间的相互关系,并初步介绍相关的治疗进展。

Non-alcoholic fatty liver disease (NAFLD) is a pathologic condition manifested by the excessive accumulation of visceral fat in the liver so much so that it gradually progresses to end-stage liver cirrhosis and hepatocellular carcinoma.Some of the NAFLD patients could be comorbid with sarcopenic obesity (SO), especially those of the elderly.As the world's aging population grows, SO has come into the spotlight as a special type of obesity.From the perspective of pathophysiology, SO and NAFLD share many common influencing factors, such as inflammation, aging, insulin resistance, myokines, etc.However, the interactions between these factors remain elusive.Bariatric metabolic surgery has been an effective means to improve glucose and lipid metabolism for young adults and older patients with obesity as well.Clarifying the pathogenesis of sarcopenic obesity and the mechanism of the metabolic disorder process is an important prerequisite for evaluating the feasibility of bariatric and metabolic surgery.In this review, we tried to elucidate the pathogenesis and interrelationship of sarcopenic obesity and NAFLD and provide an overview of the related treatment advancements.

图1 SO与NAFLD的双向关系 注:图1源自Servier Medical Art(http://smart.Servier.com/),经修改使用,已获创造性共同署名4.0通用许可(https://creativecommons.org/licenses/by/4.0/deed.en)授权
[1]
Wong VW, Ekstedt M, Wong GL, et al.Changing epidemiology,global trends and implications for outcomes of NAFLD [J].J Hepatol,2023, 79(3): 842-852.
[2]
Petermann-Rocha F, Balntzi V, Gray SR, et al.Global prevalence of sarcopenia and severe sarcopenia: A systematic review and metaanalysis [J].J Cachexia Sarcopenia Muscle, 2022, 13(1): 86-99.
[3]
Carias S, Castellanos AL, Vilchez V, et al.Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation [J].J Gastroenterol Hepatol, 2016, 31(3): 628-633.
[4]
Cruz-Jentoft AJ, Bahat G, Bauer J, et al.Sarcopenia: revised European consensus on definition and diagnosis [J].Age Ageing, 2019, 48(1):16-31.
[5]
Jo IH, Song DS, Chang UI, et al.Change in skeletal muscle mass is associated with hepatic steatosis in nonalcoholic fatty liver disease [J].Sci Rep, 2023, 13(1): 6920.
[6]
Mai Z, Chen Y, Mao H, et al.Association between the skeletal muscle mass to visceral fat area ratio and metabolic dysfunction-associated fatty liver disease: A cross-sectional study of NHANES 2017-2018 [J].J Diabetes, 2024, 16(6): e13569.
[7]
Emhmed Ali S, Nguyen MH.Sarcopenic obesity in non-alcoholic fatty liver disease-the union of two culprits [J].Life (Basel), 2021,11(2): 119.
[8]
Kuchay MS, Martínez-Montoro JI, Kaur P, et al.Non-alcoholic fatty liver disease-related fibrosis and sarcopenia: An altered liver-muscle crosstalk leading to increased mortality risk [J].Ageing Res Rev,2022, 80: 101696.
[9]
Polyzos SA, Vachliotis ID, Mantzoros CS.Sarcopenia, sarcopenic obesity and nonalcoholic fatty liver disease [J].Metabolism, 2023,147: 155676.
[10]
Lee J, Na S, Kim T, et al.Muscle mass adjusted for body weight is associated with significant liver fibrosis in young adults with nonalcoholic fatty liver disease: A cross-sectional study from a korean military hospital [J].J Obes Metab Syndr, 2023, 32(3): 279-283.
[11]
Yan F, Nie G, Zhou N, et al.Association of fat-to-muscle ratio with non-alcoholic fatty liver disease: a single-centre retrospective study [J].BMJ Open, 2023, 13(10): e072489.
[12]
Nachit M, Dioguardi Burgio M, Abyzov A, et al.Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease is associated with heterogeneous pattern of fat infiltration in skeletal muscles [J].Eur Radiol, 2024, 34(3): 1461-1470.
[13]
Kim D, Wijarnpreecha K, Sandhu KK, et al.Sarcopenia in nonalcoholic fatty liver disease and all-cause and cause-specific mortality in the United States [J].Liver Int,2021, 41(8): 1832-1840.
[14]
Zhang P, Peterson M, Su G L, et al.Visceral adiposity is negatively associated with bone density and muscle attenuation [J].Am J Clin Nutr,2015, 101(2): 337-343.
[15]
Frigerio F, De Marinis M, Camardella F, et al.Dynapenia, muscle quality, and hepatic steatosis in patients with obesity and sarcopenic obesity [J].Biomedicines, 2023, 11(2): 472.
[16]
Cohen E, Margalit I, Shochat T, et al.Markers of chronic inflammation in overweight and obese individuals and the role of gender: A crosssectional study of a large cohort [J].J Inflamm Res, 2021, 14: 567-573.
[17]
Mendes De Oliveira E, Silva JC, Ascar TP, et al.Acute inflammation is a predisposing factor for weight gain and insulin resistance [J].Pharmaceutics, 2022, 14(3): 623.
[18]
Wu H, Ballantyne CM.Metabolic inflammation and insulin resistance in obesity [J].Circ Res, 2020, 126(11): 1549-1564.
[19]
Qin W, Weng J.Hepatocyte NLRP3 interacts with PKCε to drive hepatic insulin resistance and steatosis [J].Sci Bull (Beijing), 2023,68(13): 1413-1429.
[20]
Hao XY, Zhang K, Huang XY, et al.Muscle strength and nonalcoholic fatty liver disease/metabolic-associated fatty liver disease [J].World J Gastroenterol, 2024, 30(7): 636-643.
[21]
Loo GH, Rajan R, Mohd Tamil A, et al.Prevalence of obstructive sleep apnea in an Asian bariatric population: An underdiagnosed dilemma [J].Surg Obes Relat Dis, 2020, 16(6): 778-783.
[22]
Kariuki JK, Yang K, Scott PW, et al.Obstructive sleep apnea risk is associated with severity of metabolic syndrome: A secondary analysis of the 2015-2018 national health and nutrition examination survey [J].J Cardiovasc Nurs, 2022, 37(5): 482-489.
[23]
Drager LF, Togeiro SM, Polotsky VY, et al.Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome [J].J Am Coll Cardiol, 2013, 62(7): 569-76.
[24]
Parikh MP, Gupta NM, Mccullough AJ.Obstructive sleep apnea and the liver [J].Clin Liver Dis, 2019, 23(2): 363-382.
[25]
Jehan S, Zizi F, Pandi-Perumal SR, et al.Obstructive sleep apnea and obesity: Implications for public health [J].Sleep Med Disord, 2017,1(4): 00019.
[26]
Wang Y, Lin YN, Zhang LY, et al.Changes of circulating biomarkers of inflammation and glycolipid metabolism by CPAP in OSA patients:A meta-analysis of time-dependent profiles [J].Ther Adv Chronic Dis,2022, 13: 20406223211070919.
[27]
Qin H, Wang Y, Chen X, et al.The efficacy of bariatric surgery on pulmonary function and sleep architecture of patients with obstructive sleep apnea and co-morbid obesity: A systematic review and metaanalysis [J].Surg Obes Relat Dis, 2023, 19(12): 1444-1457.
[28]
Bali T, Chrysavgis L, Cholongitas E.Metabolic-associated fatty liver disease and sarcopenia [J].Endocrinol Metab Clin North Am,2023,52(3): 497-508.
[29]
Doherty TJ.The influence of aging and sex on skeletal muscle mass and strength [J].Curr Opin Clin Nutr Metab Care, 2001, 4(6): 503-508.
[30]
Cikes D, Leutner M, Cronin SJF, et al.Gpcpd1-GPC metabolic pathway is dysfunctional in aging and its deficiency severely perturbs glucose metabolism [J].Nature Aging, 2024, 4(1): 80-94.
[31]
Li CW, Yu K, Shyh-Chang N, et al.Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review [J].J Cachexia Sarcopenia Muscle, 2022, 13(2): 781-794.
[32]
Park J, Chen Y, Kim J, et al.CO-Induced TTP activation alleviates cellular senescence and age-dependent hepatic steatosis via downregulation of PAI-1 [J].Aging Dis, 2023, 14(2): 484-501.
[33]
Bilgic SN, Domaniku A, Toledo B, et al.EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia [J].Nature, 2023,617(7962): 827-834.
[34]
Yang J, Zhou W, Zhu J, et al.Circulating ectodysplasin A is a potential biomarker for nonalcoholic fatty liver disease [J].Clin Chim Acta,2019, 499: 134-141.
[35]
Oh H, Cho W, Abd El-Aty A M, et al.Resolvin D3 improves the impairment of insulin signaling in skeletal muscle and nonalcoholic fatty liver disease through AMPK/autophagy-associated attenuation of ER stress [J].Biochem Pharmacol, 2022, 203: 115203.
[36]
Fang C, Cai X, Hayashi S, et al.Caffeine-stimulated muscle IL-6 mediates alleviation of non-alcoholic fatty liver disease [J].Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(3): 271-280.
[37]
Li Q, Tan Y, Chen S, et al.Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-κB signaling [J].J Recept Signal Transduct Res, 2021, 41(3):294-303.
[38]
Strasser B, Wolters M, Weyh C, et al.The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society [J].Nutrients, 2021, 13(6): 2045.
[39]
De Vos WM, Tilg H, Van Hul M, et al.Gut microbiome and health:mechanistic insights [J].Gut, 2022, 71(5): 1020-1032.
[40]
Woodhouse CA, Patel VC, Singanayagam A, et al.Review article:the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease [J].Aliment Pharmacol Ther, 2018,47(2): 192-202.
[41]
Qiu Y, Yu J, Ji X, et al.Ileal FXR-FGF15/19 signaling activation improves skeletal muscle loss in aged mice [J].Mech Ageing Dev,2022, 202: 111630.
[42]
Mancin L, Wu GD, Paoli A.Gut microbiota-bile acid-skeletal muscle axis [J].Trends Microbiol, 2023, 31(3): 254-269.
[43]
Aliwa B, Horvath A, Traub J, et al.Altered gut microbiome, bile acid composition and metabolome in sarcopenia in liver cirrhosis [J].J Cachexia Sarcopenia Muscle, 2023, 14(6): 2676-2691.
[44]
Murata K, Kaji K, Nishimura N, et al.Rifaximin enhances the L-carnitine-mediated preventive effects on skeletal muscle atrophy in cirrhotic rats by modulating the gut-liver-muscle axis [J].Int J Mol Med, 2022, 50(2): 101.
[45]
Kuramoto K, Liang H, Hong JH, et al.Exercise-activated hepatic autophagy via the FN1-α5β1 integrin pathway drives metabolic benefits of exercise [J].Cell Metab, 2023, 35(4): 620-632.e5.
[46]
Haigh L, Kirk C, El Gendy K, et al.The effectiveness and acceptability of Mediterranean diet and calorie restriction in nonalcoholic fatty liver disease (NAFLD): A systematic review and metaanalysis [J].Clin Nutr, 2022, 41(9): 1913-1931.
[47]
Kokkorakis M, Boutari C, Hill MA, et al.Resmetirom, the first approved drug for the management of metabolic dysfunctionassociated steatohepatitis: Trials, opportunities, and challenges [J].Metabolism, 2024, 154: 155835.
[48]
Kamata S, Honda A, Ishikawa R, et al.Functional and structural insights into the human PPARα/δ/γ targeting preferences of Anti-NASH investigational drugs, lanifibranor, seladelpar, and elafibranor[J].Antioxidants (Basel), 2023, 12(8): 1523.
[49]
Vallianou NG, Tsilingiris D, Kounatidis D, et al.Sodium-glucose cotransporter-2 inhibitors in obesity and associated cardiometabolic disorders: Where do we stand? [J].Pol Arch Intern Med, 2022,132(10): 16342.
[50]
Bellanti F, Lo Buglio A, Dobrakowski M, et al.Impact of sodium glucose cotransporter-2 inhibitors on liver steatosis/fibrosis/inflammation and redox balance in non-alcoholic fatty liver disease [J].World J Gastroenterol, 2022, 28(26): 3243-3257.
[51]
Harrison SA, Alkhouri N, Davison BA, et al.Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, doubleblind, placebo-controlled phase IIb study [J].J Hepatol, 2020, 72(4):613-626.
[52]
Li H, Zheng J, Xu Q, et al.Hepatocyte adenosine kinase promotes excessive fat deposition and liver inflammation [J].Gastroenterology,2023, 164(1): 134-146.
[53]
Wang S, Li K, Pickholz E, et al.An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis [J].Sci Transl Med, 2023, 15(677): eadd3949.
[54]
Zhou D, Shi Y, Zhang D, et al.Liver-secreted FGF21 induces sarcopenia by inhibiting satellite cell myogenesis via klotho beta in decompensated cirrhosis [J].Redox Biol, 2024, 76: 103333.
[55]
Crombie EM, Kim S, Adamson S, et al.Activation of eIF4E-bindingprotein-1 rescues mTORC1-induced sarcopenia by expanding lysosomal degradation capacity [J].J Cachexia Sarcopenia Muscle,2023, 14(1): 198-213.
[56]
Chetty AK, Rafi E, Bellini NJ, et al.A review of incretin therapies approved and in late-stage development for overweight and obesity management [J].Endocr Pract, 2024, 30(3): 292-303.
[57]
Wu J, Lin S, Chen W, et al.TNF-α contributes to sarcopenia through caspase-8/caspase-3/GSDME-mediated pyroptosis [J].Cell Death Discov, 2023, 9(1): 76.
[58]
Bai J, Jia Z, Chen Y, et al.Bariatric surgery is effective and safe for obese patients with compensated cirrhosis: a systematic review and meta-analysis [J].World J Surg, 2022, 46(5): 1122-1133.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 赵亚楠, 方明, 徐绍岩, 魏树梅, 张慧, 黄奕宁, 刘亚静, 黄品同. 多声学技术参数联合血清学指标对非酒精性脂肪性肝病肝脂肪变性阶段的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(11): 1164-1173.
[3] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[4] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[5] 刘洋, 盛赵莹, 孙琳琳. 白细胞介素6启动子通过调控人端粒酶逆转录酶减轻细胞炎症和DNA损伤[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 104-110.
[6] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[7] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[8] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[9] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
[10] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[11] 王嘉琳, 宋青. 妊娠合并胰岛素抵抗诊治的研究进展[J/OL]. 中华产科急救电子杂志, 2024, 13(01): 29-32.
[12] 王超, 王浩, 孙柏, 袁野, 羌伟光, 石红兵. 卡非佐米联合碘-125粒子照射促进人食管癌细胞KYSE-150凋亡的机制研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(02): 106-113.
[13] 何玉花, 钟欢妹, 王文惠, 沈永棋, 刘映云, 顾国威, 陈丹娜. 不同表型多囊卵巢综合征患者代谢指标及肥胖相关指标对多囊卵巢综合征合并代谢综合征人群的诊断效能分析[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 212-220.
[14] 于小鲁, 钟章锋, 邹德华, 陈陟阳, 王景浩, 周平辉, 王华军, 郑小飞. 衰老对肌腱的影响[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 38-44.
[15] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
阅读次数
全文


摘要