切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 128 -136. doi: 10.3877/cma.j.issn.2095-9605.2019.03.002

所属专题: 文献

论著

肥胖大鼠袖状胃切除术后肠源性脂多糖的变化及其与体重变化的相关性研究
黎熊1, 刘斌1, 李佳俊1, 刘伟1,()   
  1. 1. 610000 成都,成都医学院第二附属医院?核工业四一六医院普外科
  • 收稿日期:2019-03-03 出版日期:2019-08-30
  • 通信作者: 刘伟
  • 基金资助:
    四川省卫计委科研项目基金(18PJ489)

Change of enterogenous lipopolysaccharide and its correlation analysis with weight change after sleeve gastrectomy in obese rats

Xiong Li1, Bin Liu1, Jiajun Li1, Wei Liu1,()   

  1. 1. Department of General Surgery, the Second Affiliated Hospital of Chengdu Medical College, Nuclear industry 416 hospital, Chengdu 610000, China
  • Received:2019-03-03 Published:2019-08-30
  • Corresponding author: Wei Liu
  • About author:
    Corresponding author: Liu Wei, Email:
引用本文:

黎熊, 刘斌, 李佳俊, 刘伟. 肥胖大鼠袖状胃切除术后肠源性脂多糖的变化及其与体重变化的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2019, 05(03): 128-136.

Xiong Li, Bin Liu, Jiajun Li, Wei Liu. Change of enterogenous lipopolysaccharide and its correlation analysis with weight change after sleeve gastrectomy in obese rats[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(03): 128-136.

目的

通过检测肥胖大鼠在袖状胃切除术前后体内脂多糖的变化及分布探究脂多糖与大鼠术后体重变化的相关性。

方法

(1)建立肥胖大鼠模型成功后测量大鼠体重、体长、糖耐量及胰岛素抵抗水平并随机分组。手术组行袖状胃切除术,术后每周随机处死5只大鼠。假手术组行剖腹探查术,处死及分组同手术组。(2)术后每2日测量两组大鼠体重。(3)取两组大鼠术前及术后粪便行革兰染色,计算菌群比例。(4)手术前后定时抽取两组大鼠尾静脉血液,检测其血浆LPS水平。(5)处死大鼠时,取两组大鼠肝脏、肠系膜、肾周脂肪、附睾脂肪等组织检测其LPS水平。(6)术后对各组大鼠行糖耐量试验及胰岛素抵抗水平检测。

结果

(1)术后手术组大鼠体重进行性下降,而假手术组大鼠体重下降后回升。(2)与假手术组相比,手术组大鼠术后粪便革兰阳性菌数量增多,革兰阴性菌减少。(3)术后手术组大鼠血清LPS水平下降,而假手术组大鼠血清LPS水平下降后回升并超过术前水平。且两组大鼠血清LPS水平与取血当时的体重水平有显著的直线相关性(P=0.0004)。(4)与假手术组相比,手术组大鼠腹腔脂肪中LPS水平随术后时间降低。(5)术后手术组大鼠糖耐量水平及HOMA-IR指数降低,而假手术组升高。

结论

(1)肥胖大鼠袖状胃切除术后,大鼠体内LPS水平的变化与其体重变化存在显著相关性;(2)肥胖大鼠袖状胃切除术后,大鼠糖耐量及胰岛素敏感性得到改善。

Objective

This study aims to explore the correlation by detecting the metabolic changes and internal distribution of the LPS contained in rat during preoperative and postoperative period of sleeve gastrectomy.

Methods

(1) After successful obese rats modeling did, the weight, body length, glucose tolerance and insulin resistance level were measured and grouping them randomized. Rats in surgical group were performed sleeve gastrectomy. Then execute 5 rats per week. Rats in sham operation group were performed exploratory Laparotomy, whose grouping and execution coincides with surgical group. (2) Rats weight of surgical group and sham operation group were measured once for two days after operation. (3) Faeces of rats from two groups were selected both preoperatively and postoperatively, which were used to analysis the proportion of the gram-positive bacterium and gram-negative bacterium. (4) Rats' blood in two groups were collected regularly both before and post operation to measure serum levels of LPS. (5) In surgical group and sham operation group, tissues of liver, mesentery fat, perirenal fat and epididymal fat were picked and grinded for tissue homogenate when rats were executed to quantify the LPS contained in these tissues. 6) Glucose tolerance tests and insulin resistance level tests were performed in each group both preoperatively and postoperatively.

Results

(1) The weight of rats in sham operation group rebound gradually after decreased, even more heavier than preoperative. Oppositely, the weight of rats in surgical group decreased progressively and then stabilized. (2) the proportion of gram-positive bacteria of surgical group were increased compared with sham operation group. On the contrary, the proportion of gram-negative bacteria of surgical group were reduced. (3) The rats' serum level of LPS in operation group declined obviously after operation, however, the rats' serum level of LPS in sham operation group climbed up higher than preoperative levels. Also, serum levels of LPS in the two groups have significant linear correlation with contemporaneous body weight (P=0.0004). (4) The LPS of operation group in abdominal fat significantly decreased compared with sham operation group. (5) The glucose tolerance levels and HOMA IR of rats in surgical group significantly decreased after operation, while these index in sham operation group obviously elevated.

Conclusions

(1) There is a close relationship between their LPS and body weight after sleeve gastrectomy of obese rats; (2) After sleeve gastrectomy of obese rats, glucose tolerance and insulin sensitivity are improved.

表1 术前大鼠体重、体长、糖耐量水平及胰岛素抵抗水平
图1 高脂饲料喂养组大鼠(左)与普通饲料喂养组大鼠(右)外观体型比较
图2 手术组大鼠与假手术组大鼠体重变化曲线
表2 术前及术后第4周手术组与假手术组大鼠粪便菌群比例变化
图3 术前及术后4周粪便革兰染色油镜下随机视野。3A:手术组大鼠术前粪便革兰染色;3B:假手术组大鼠术前粪便革兰染色;3C:手术组术大鼠术后4周粪便革兰染色;3D:假手术组大鼠术后4周粪便革兰染色
表3 手术组及假手术组大鼠各期血清LPS水平
图4 手术组及假手术组大鼠各期血清LPS水平
图5 大鼠血清LPS水平与体重直线回归关系
图6 手术组及假手术组大鼠各期组织LPS水平
表4 手术组、假手术组大鼠术前及术后第28天糖耐量水平及胰岛素抵抗水平
图7 袖状胃切除范围及术后4周残胃情况
[1]
Ogden CL, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in body mass index among US children and adolescents 1999-2010[J]. JAMA, 2012, 1 (5): 483-490.
[2]
NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population based measurement studies with 19.2 million participants[J]. Lancet, 2016, 387(10026): 1377-1396.
[3]
Francisco LJ, Mery CB. Update: systemic diseases and the cardiovascular system: obesity and the heart[J]. Rev Esp Cardiol, 2011, 64(2): 140-149.
[4]
Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2: a report of 2 cases[J]. Surg Obes Relat Dis, 2007, 3(2): 195-197.
[5]
Uglioni B, Wolnerhanssen B, Peters T, et al. Midterm results of primary vs. secondary laparoscopic sleeve gastrectomy (LSG) as an isolated operation[J]. Obes Surg, 2009, 19(4): 401-406.
[6]
Holst JJ. The physiology of glucagon-like peptide-1 review[J]. Physiol Rev, 2007, 87(4): 1409-1439.
[7]
Wang Yong, Liu Jingang. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy[J]. Obes Surg, 2009, 19(3): 357-362.
[8]
Joshua L, Moselio S. The Desk Encyclopedia of Microbiology[D]. Amsterdam: Elsevier Academic, 2004: 428.
[9]
Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides [J]. Lipid Res, 2009, 50(1): 90-97.
[10]
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772.
[11]
Blasco-Baque V, Serino M, Vergnes JN, et al. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: protective action of estrogens [J]. PLoS One, 2012, 7(11): e48220.
[12]
Ghoshal S, Witta J, Zhong Jian, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides[J]. Lipid Res, 2009, 50(1): 90-97.
[13]
Laugerette F, Vors C, Peretti N, et al. Complex links between dietary lipids, endogenous endotoxins and metabolic infl ammation[J]. Biochimie, 2011, 93(1): 39-45.
[14]
Troseid M, Nestvold TK, et al. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence frombariatric surgery[J]. Diabetes Care, 2013, 36(11): 3627-3632.
[15]
Pussinen PJ, Havulinna AS, Lehto M, et al. Endotoxemia is associated with an increased risk of incident diabetes[J]. Diabetes Care, 2011,34(2):392-397.
[16]
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventionalmedical therapy for type 2 diabetes[J]. N Engl Med, 2012, 366(17): 1577-1585.
[17]
Greene E. Anatomy of the rat[M]. New York: Hafner Publishing Co, 1968: 124-126.
[18]
Robert A. Proposed terminology for the anatomy of the rat stomach[J]. Gastroenterology, 1971, 60(2): 344-345.
[19]
Chandler PC. Feeding response to melanocortin agonistpredicts preference for and obesity from a high-fatdiet[J]. Physiol Behav, 2005, 85(2): 221-230.
[20]
王竹. 高血糖动物模型的建立及其影响因素研究[D]. 北京:中国疾病预防控制中心, 2013.
[21]
Serra C, Baltasar A, perez N, et al. Laparoscopic reoperative sleeve gastrectomy[J]. Cir Esp, 2007, 82(1): 37-40.
[22]
Langer FB, Bohdjalian A, Falbervawer FX,et al. Does gastric dilatation limit the success of sleeve gastrectomy as a sole operation for morbid obesity[J]. Obes Surg, 2006, 16(2): 166-171.
[23]
Clemente-Postigo M, Roca-Rodriguez MDM, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery[J]. Surgery for Obesity and Related Diseases, 2015, 11(4): 933-939.
[24]
Ridaura VK. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150): 1241214.
[25]
Lam YY, Ha CW, Campbell CR, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice[J]. PLoS ONE, 2012, 7(3): e34233.
[26]
Ofengeim D, Yuan Junying. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death[J]. Nature Reviews Molecular Cell Biology, 2013, 14(11): 727-736.
[27]
Caesar R, Reigstad CS, Bäckhed HK, et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice[J]. Gut, 2012, 61(12): 1701-1707.
[28]
Yu R, Kim CS, Kwon BS, et al. Mesenteric adipose tissue derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice[J]. Obesity(Silver Spring), 2006, 14(8): 1353-1362.
[29]
Lopez PP, Nicholson SE, Burkhardt GE, et al. Development of a Sleeve Gastrectomy Weight Loss Model in Obese Zucker Rats[J]. Surg Res, 2009, 157(2): 243-250.
[30]
Nakarai H, Yamashita A, Nagayasu S, et al. Adipocyte macrophage interaction may mediate LPS-induced low-grade inflammation: potential link with metabolic complications[J]. Innate Immun, 2012, 18(1): 164-170.
[31]
Breusing N, Lagerpusch M, et al. Influence of Energy Balance and Glycemic Index on Metabolic Endotoxemia in Healthy Men[J]. Am Coll Nutr, 2017, 36(1): 72-79.
[32]
Sandeep S, Gokulakrishnan K, Velmumgan K, et al. Visceral&subcutaneous abdominal fat in relation to insulin resistance &metabolic syndrome in nondiabetic south Indians[J]. Indian J Med Res, 20l0, 13l: 629-635.
[33]
Sironi AM, Petz R, De-Marchi D, et al. Impact of increased visceral and cardiac fat on cardiometabolic risk and disease[J]. Diabet Med, 2012, 29(5): 622-627.
[1] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[2] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[3] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[4] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[5] 李晓晖, 上官昌盛, 向英, 裴芝皆, 车俊志, 谢飞. 3D腹腔镜袖状胃切除术后机体能量代谢与多囊卵巢综合征患者性激素水平关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 538-541.
[6] 牛朝, 李波, 张万福, 靳文帝, 王春晓, 李晓刚. 腹腔镜袖状胃切除联合胆囊切除治疗肥胖合并胆囊结石安全性和疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 635-639.
[7] 程晨, 赵从, 蒋媛, 张丽. 术中体温水平对代谢综合征合并胃食管反流病行腹腔镜袖状胃切除联合胃底折叠术患者预后的影响[J]. 中华胃食管反流病电子杂志, 2024, 11(01): 47-52.
[8] 邢颖, 闫文貌. 单孔腹腔镜袖状胃切除术发展现状[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 133-137.
[9] 孙海涛, 闫文貌, 郝少龙, 孙武青, 韩威, 白日星. 保留His角完整性对腹腔镜袖状胃切除术后胃食管反流的影响[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 84-87.
[10] 中国医师协会外科医师分会肥胖和糖尿病外科专家工作组. 减重手术相关贫血管理策略中国专家共识(2024版)[J]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 1-8.
[11] 赵稳, 刘浩, 李丁昌, 高文星, 刘先强, 武现生, 董光龙. 重视SADI-S手术全流程质量控制[J]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 15-20.
[12] 詹崇文, 沈奇伟, 姚琪远. 肥胖及减重手术与下肢骨关节炎的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 21-26.
[13] 高振国, 陈国彪, 汪朕红, 覃相志, 田云鸿. 腹腔镜袖状胃切除术联合胃底折叠术后胃漏1例诊疗体会[J]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 66-71.
[14] 李滢旭, 方登华, 沈宗文, 陈熊熊, 熊见武, 杨磊. 完全性内脏转位患者行腹腔镜袖状胃切除术联合胆囊切除术一例(附手术视频)[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 299-301.
[15] 张金山, 董志勇, 杨景哥, 关炳生, 胡瑞翔, 胡嵩浩, 姜舒文, 陈文辉, 杨华, 王存川. 腹腔镜袖状胃切除术后胃漏的预防和治疗策略:单中心14例分析[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 231-236.
阅读次数
全文


摘要