[1] |
Kim J, Kwon HS. Not control but conquest: strategies for the remission of type 2 diabetes mellitus [J]. Diabetes & metabolism journal, 2022, 46(2): 165-180.
|
[2] |
Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes [J]. N Engl J Med, 2017, 376(7): 641-651.
|
[3] |
Kasama K, Tagaya N, Kanehira E, et al. Laparoscopic sleeve gastrectomy with duodenojejunal bypass: technique and preliminary results [J]. Obes Surg, 2009, 19(10): 1341-1345.
|
[4] |
Seki Y, Kasama K, Haruta H, et al. Five-year-results of laparoscopic sleeve gastrectomy with duodenojejunal bypass for weight loss and type 2 diabetes mellitus [J]. Obes Surg, 2017, 27(3): 795-801.
|
[5] |
Sasaki A, Yokote K, Naitoh T, et al. Metabolic surgery in treatment of obese Japanese patients with type 2 diabetes: a joint consensus statement from the Japanese society for treatment of obesity, the japan diabetes society, and the japan society for the study of obesity [J]. Diabetol Int, 2022, 13(1): 1-30.
|
[6] |
Murphy R, Clarke MG, Evennett NJ, et al. Laparoscopic sleeve gastrectomy versus banded Roux-en-Y gastric bypass for diabetes and obesity: a prospective randomised double-blind trial [J]. Obes Surg, 2018, 28(2): 293-302.
|
[7] |
Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2: a report of 2 cases [J]. Surg Obes Relat Dis, 2007, 3(2): 195-197.
|
[8] |
Del Genio G, Gagner M, Cuenca-Abente F, et al. Laparoscopic sleeve gastrectomy with duodeno-jejunal bypass: a new surgical procedure for weight control. Feasibility and safety study in a porcine model [J]. Obes Surg, 2008, 18(10): 1263-1267.
|
[9] |
杨映弘, 吴艳军, 徐颖, 等. 袖状胃切除间置回肠的十二指肠空肠旁路手术治疗2型糖尿病的早期效果 [J]. 中华内分泌外科杂志, 2011, 5(6) 424-425.
|
[10] |
Lee WJ, Almulaifi AM, Tsou JJ, et al. Duodenal-jejunal bypass with sleeve gastrectomy versus the sleeve gastrectomy procedure alone: the role of duodenal exclusion [J]. Surg Obes Relat Dis, 2015, 11(4): 765-770.
|
[11] |
Sessa L, Guidone C, Gallucci P, et al. Effect of single anastomosis duodenal-ileal bypass with sleeve gastrectomy on glucose tolerance test: comparison with other bariatric procedures [J]. Surg Obes Relat Dis, 2019, 15(7): 1091-1097.
|
[12] |
Miras A D, Le Roux C W. Mechanisms underlying weight loss after bariatric surgery [J]. Nat Rev Gastroenterol Hepatol, 2013, 10(10): 575-584.
|
[13] |
Rosenthal R J, Szomstein S, Kennedy C I, et al. Laparoscopic surgery for morbid obesity: 1,001 consecutive bariatric operations performed at the bariatric institute, cleveland clinic florida [J]. Obes Surg, 2006, 16(2): 119-124.
|
[14] |
Raj P P, Kumaravel R, Chandramaliteeswaran C, et al. Laparoscopic duodenojejunal bypass with sleeve gastrectomy: preliminary results of a prospective series from India [J]. Surg Endosc, 2012, 26(3): 688-692.
|
[15] |
Nor Hanipah Z, Hsin MC, Liu CC, et al. Laparoscopic loop duodenaljejunal bypass with sleeve gastrectomy in type 2 diabetic patients [J]. Surg Obes Relat Dis, 2019, 15(5): 696-702.
|
[16] |
Lee WJ, Lee KT, Kasama K, et al. Laparoscopic single-anastomosis duodenal-jejunal bypass with sleeve gastrectomy (SADJB-SG): short-term result and comparison with gastric bypass [J]. Obes Surg, 2014, 24(1): 109-113.
|
[17] |
Lee WJ, Almulaifi A, Tsou JJ, et al. Laparoscopic sleeve gastrectomy for type 2 diabetes mellitus: predicting the success by ABCD score [J]. Surg Obes Relat Dis, 2015, 11(5): 991-996.
|
[18] |
Naitoh T, Kasama K, Seki Y, et al. Efficacy of sleeve gastrectomy with duodenal-jejunal bypass for the treatment of obese severe diabetes patients in Japan: a retrospective multicenter study [J]. Obes Surg, 2018, 28(2): 497-505.
|
[19] |
Lee MH, Lee WJ, Chong K, et al. Predictors of long-term diabetes remission after metabolic surgery [J]. J Gastrointest Surg, 2015, 19(6): 1015-1021.
|
[20] |
Bhasker AG, Remedios C, Batra P, et al. Predictors of remission of T2DM and metabolic effects after laparoscopic Roux-en-Y gastric bypass in obese Indian diabetics-a 5-year study [J]. Obes Surg, 2015, 25(7): 1191-1197.
|
[21] |
Dixon JB, Chuang LM, Chong K, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes [J]. Diabetes Care, 2013, 36(1): 20-26.
|
[22] |
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes [J]. N Engl J Med, 2012, 366(17): 1577-1585.
|
[23] |
Dixon JB, Hur KY, Lee WJ, et al. Gastric bypass in type 2 diabetes with BMI< 30: weight and weight loss have a major influence on outcomes [J]. Diabet Med, 2013, 30(4): e127-134.
|
[24] |
Fried M, Ribaric G, Buchwald JN, et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI<35 kg/m2: an integrative review of early studies [J]. Obes Surg, 2010, 20(6): 776-790.
|
[25] |
Shimizu H, Timratana P, Schauer PR, et al. Review of metabolic surgery for type 2 diabetes in patients with a BMI < 35 kg/m2 [J]. J Obes, 2012, 2012: 147256.
|
[26] |
Shen SC, Lee WJ, Kasama K, et al. Efficacy of different procedures of metabolic surgery for type 2 diabetes in Asia: a multinational and multicenter exploratory study [J]. Obes Surg, 2021, 31(5): 2153-2160.
|
[27] |
Zachariah PJ, Chen CY, Lee WJ, et al. Compared to sleeve gastrectomy, duodenal-jejunal bypass with sleeve gastrectomy gives better glycemic control in T2DM patients, with a lower β-cell response and similar appetite sensations: mixed-meal study [J]. Obes Surg, 2016, 26(12): 2862-2872.
|
[28] |
Ramos AC, Galvão Neto MP, De Souza Y M, et al. Laparoscopic duodenal-jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI<30 kg/m2 (LBMI) [J]. Obes Surg, 2009, 19(3): 307-312.
|
[29] |
Pories W J, Swanson M S, Macdonald K G, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus [J]. Ann Surg, 1995, 222(3): 339-350; discussion 350-332.
|
[30] |
Huang CK, Tai C M, Chang PC, et al. Loop duodenojejunal bypass with sleeve gastrectomy: comparative study with Roux-en-Y gastric bypass in type 2 diabetic patients with a BMI <35 kg/m2, first year results [J]. Obes Surg, 2016, 26(10): 2291-2301.
|
[31] |
Praveen Raj P, Kumaravel R, Chandramaliteeswaran C, et al. Is laparoscopic duodenojejunal bypass with sleeve an effective alternative to Rouxen Y gastric bypass in morbidly obese patients: preliminary results of a randomized trial [J]. Obesity Surgery, 2012, 22(3): 422-426.
|
[32] |
Chen G, Zhang GX, Peng BQ, et al. Roux-en-Y gastric bypass versus sleeve gastrectomy plus procedures for treatment of morbid obesity: systematic review and meta-analysis [J]. Obes Surg, 2021, 31(7): 3303-3311.
|
[33] |
Seki Y, Kasama K, Umezawa A, et al. Laparoscopic sleeve gastrectomy with duodenojejunal bypass for type 2 diabetes mellitus [J]. Obesity surgery, 2016, 26(9): 2035-2044.
|
[34] |
Baxter JN, Grime JS, Critchley M, et al. Relationship between gastric emptying of a solid meal and emptying of the gall bladder before and after vagotomy [J]. Gut, 1987, 28(7): 855-863.
|
[35] |
Stadaas JO. Intragastric pressure/volume relationship before and after proximal gastric vagotomy [J]. Scand J Gastroenterol, 1975, 10(2): 129-134.
|
[36] |
Gagner M. Laparoscopic sleeve gastrectomy with duodenojejunal bypass for severe obesity and/or type 2 diabetes may not require duodenojejunal bypass initially [J]. Obes Surg, 2010, 20(9): 1323-1324; author reply 1325-1326.
|
[37] |
Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery [J]. Endocrinology, 2009, 150(6): 2518-2525.
|
[38] |
Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes [J]. Ann Surg, 2006, 244(5): 741-749.
|
[39] |
Jiang F, Zhu H, Zheng X, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in chinese patients with an average body mass index<24 kg/m2 [J]. Surg Obes Relat Dis, 2014, 10(4): 641-646.
|
[40] |
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP [J]. Gastroenterology, 2007, 132(6): 2131-2157.
|
[41] |
Drucker DJ. The role of gut hormones in glucose homeostasis [J]. J Clin Invest, 2007, 117(1): 24-32.
|
[42] |
Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat [J]. Gastroenterology, 2010, 138(7): 2437-2446, 2446.e2431.
|
[43] |
Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in goto-kakizaki rats through an enhanced proglucagon gene expression and l-cell number [J]. Surgery, 2007, 142(1): 74-85.
|
[44] |
Jia D, Tan H, Faramand A, et al. One anastomosis gastric bypass versus Roux-en-Y gastric bypass for obesity: a systematic review and meta-analysis of randomized clinical trials [J]. Obes Surg, 2020, 30(4): 1211-1218.
|
[45] |
Roslin M, Tugertimur B, Zarabi S, et al. Is there a better design for a bariatric procedure? The case for a single anastomosis duodenal switch [J]. Obes Surg, 2018, 28(12): 4077-4086.
|
[46] |
Miyachi T, Nagao M, Shibata C, et al. Biliopancreatic limb plays an important role in metabolic improvement after duodenal-jejunal bypass in a rat model of diabetes [J]. Surgery, 2016, 159(5): 1360-1371.
|
[47] |
Takayama H, Ohta M, Tada K, et al. Additional effects of duodenojejunal bypass on glucose metabolism in a rat model of sleeve gastrectomy [J]. Surg Today, 2019, 49(7): 637-644.
|
[48] |
Gorboulev V, Schürmann A, Vallon V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion [J]. Diabetes, 2012, 61(1): 187-196.
|
[49] |
Zhou L, Wang F, Song X, et al. 3-Deoxyglucosone reduces glucagon-like peptide-1 secretion at low glucose levels through down-regulation of SGLT1 expression in STC-1 cells [J]. Arch Physiol Biochem, 2021, 127(4): 311-317.
|
[50] |
Moraes-Vieira PM, Yore MM, Dwyer PM, et al. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance [J]. Cell Metab, 2014, 19(3): 512-526.
|
[51] |
Borst SE. The role of TNF-alpha in insulin resistance [J]. Endocrine, 2004, 23(2-3): 177-182.
|
[52] |
Zand H, Morshedzadeh N, Naghashian F. Signaling pathways linking inflammation to insulin resistance [J]. Diabetes Metab Syndr, 2017, 11(Suppl 1): S307-s309.
|
[53] |
夏靖, 荣海钦. 炎症与胰岛素抵抗 [J]. 医学综述, 2007, (20): 1531-1533.
|
[54] |
Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance [J]. Science, 1996, 271(5249): 665-668.
|
[55] |
程玉刚. 袖状胃切除加近端小肠旁路术改善糖代谢的作用及机制研究 [D]. 济南: 山东大学, 2019.
|
[56] |
Li J, Tang Y, Cai D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes [J]. Nat Cell Biol, 2012, 14(10): 999-1012.
|
[57] |
Yu H, Song Z, Zhang H, et al. Duodenojejunal bypass plus sleeve gastrectomy reduces infiltration of macrophages and secretion of TNF-α in the visceral white adipose tissue of goto-kakizaki rats [J]. Obes Surg, 2019, 29(6): 1742-1750.
|