切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 277 -282. doi: 10.3877/cma.j.issn.2095-9605.2022.04.010

综述

肥胖与骨质疏松关系的研究进展
何飞龙1, 臧嘉捷2, 吴春峰1,()   
  1. 1. 200336 上海,上海市疾病预防控制中心业务管理处
    2. 200336 上海,上海市疾病预防控制中心健康危害因素监测与控制所
  • 收稿日期:2022-08-29 出版日期:2022-11-30
  • 通信作者: 吴春峰
  • 基金资助:
    上海市卫生健康委员会卫生行业临床研究专项(20214Y0487)

Research progress on the relationship between obesity and osteoporosis

Feilong He1, Jiajie Zang2, Chunfeng Wu1,()   

  1. 1. Integrated Management Office, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
    2. Division of Health Risk Factor Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
  • Received:2022-08-29 Published:2022-11-30
  • Corresponding author: Chunfeng Wu
引用本文:

何飞龙, 臧嘉捷, 吴春峰. 肥胖与骨质疏松关系的研究进展[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 277-282.

Feilong He, Jiajie Zang, Chunfeng Wu. Research progress on the relationship between obesity and osteoporosis[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2022, 08(04): 277-282.

伴随人口老龄化以及生活方式变化,肥胖、骨质疏松等慢性病的发病率持续走高,已成为威胁居民健康的重大公共卫生问题。研究报道肥胖与骨质疏松之间存在密切关联,潜在的调控机制复杂。本文将从流行病学调查以及细胞分子机制两个层面对肥胖和骨质疏松关联情况进行综述,进一步阐明肥胖影响骨骼健康的重要因素(图1),并初步探讨脂肪组织和骨骼系统互相影响的重要途径(图2),为开展共患人群健康管理和临床研究提供理论依据。

With the aging of the population and changes in lifestyle, the incidence of chronic diseases such as obesity and osteoporosis continues to rise, which has become a major public health problem that threatens the health of residents. Studies have reported a close relationship between obesity and osteoporosis, and the underlying regulatory mechanisms are complex. This article will review the relationship between obesity and osteoporosis from two levels of epidemiological investigation and cellular and molecular mechanisms, further clarify the important factors that obesity affects bone health (Figure 1), and preliminarily explore the mutual influence of adipose tissue and skeletal system (Figure 2), providing a theoretical basis for health management and clinical research of comorbid populations.

图1 肥胖影响骨骼健康的保护因素和不利因素
图2 肥胖影响骨质疏松发生的重要途径
[1]
WHO. Obesity and overweight [EB/OL]. (2021-06-30) [2022/08/16].

URL    
[2]
中国疾病预防控制中心营养数据年鉴. 超重肥胖 [EB/OL]. [2022/08/16].

URL    
[3]
Aspray TJ, Hill TR. Osteoporosis and the Ageing Skeleton [J]. Subcell Biochem, 2019, 91: 453-476.
[4]
国家卫生健康委员会. 首次中国居民骨质疏松症流行病学调查结果 [EB/OL]. (2018-10-19) [2022/8/16].

URL    
[5]
Yu F, Xia W. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China [J]. Arch Osteoporos, 2019, 14(1): 32.
[6]
Gkastaris K, Goulis DG, Potoupnis M, et al. Obesity, osteoporosis and bone metabolism [J]. J Musculoskelet Neuronal Interact, 2020, 20(3): 372-381.
[7]
Premaor MO, Comim FV, Compston JE. Obesity and fractures [J]. Arquivos Brasileiros de Endocrinologia & Metabologia, 2014, 5(58): 470-477.
[8]
Curtis EM, Moon RJ, Harvey NC, et al. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide [J]. Bone, 2017, 104: 29-38.
[9]
Fassio A, Idolazzi L, Rossini M, et al. The obesity paradox and osteoporosis [J]. Eat Weight Disord, 2018, 23(3): 293-302.
[10]
Rinonapoli G, Pace V, Ruggiero C, et al. Obesity and bone: a complex relationship [J]. Int J Mol Sci, 2021, 22(24): 13662.
[11]
Proietto J. Obesity and Bone [J]. F1000Res, 2020, 9: 1111.
[12]
[Walsh JS, Vilaca T. Obesity, type 2 diabetes and bone in adults [J]. Calcif Tissue Int, 2017, 100(5): 528-535.
[13]
Evans AL, Paggiosi MA, Eastell R, et al. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood [J]. J Bone Miner Res, 2015, 30(5): 920-928.
[14]
Jose A, Cherian KE, Nandyal MB, et al. Trabecular bone score and bone mineral density in postmenopausal women with morbid obesity-a clinical paradox [J]. Med Sci (Basel), 2021, 9(4): 69.
[15]
Li Y. Association between obesity and bone mineral density in middle-aged adults [J]. J Orthop Surg Res, 2022, 17(1): 268.
[16]
Hajihosseinali M, Arjmand N, Shirazi-Adl A. Effect of body weight on spinal loads in various activities: a personalized biomechanical modeling approach [J]. J Biomech, 2015, 48(2): 276-282.
[17]
Ghezelbash F, Shirazi-Adl A, Plamondon A, et al. Obesity and obesity shape markedly influence spine biomechanics: a subject-specific risk assessment model [J]. Ann Biomed Eng, 2017, 45(10): 2373-2382.
[18]
Turcotte AF, O'Connor S, Morin SN, et al. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: a systematic review and meta-analysis [J]. PLoS One, 2021, 16(6): e252487.
[19]
Yi SW, Bae JH, Kim YM, et al. Relationship between body mass index and fracture risk at different skeletal sites: a nationwide cohort study [J]. Arch Osteoporos, 2022, 17(1): 99.
[20]
Hjelle AM, Apalset EM, Gjertsen JE, et al. Associations of overweight, obesity and osteoporosis with ankle fractures [J]. BMC Musculoskelet Disord, 2021, 22(1): 723.
[21]
Li X, Gong X, Jiang W. Abdominal obesity and risk of hip fracture: a meta-analysis of prospective studies [J]. Osteoporos Int, 2017, 28(10): 2747-2757.
[22]
Benedick A, Audet MA, Vallier HA. The effect of obesity on post-operative complications and functional outcomes after surgical treatment of torsional ankle fracture: A matched cohort study [J]. Injury, 2020, 51(8): 1893-1898.
[23]
Chaudhry YP, Rao SS, Puvanesarajah V, et al. Complications and 30-day mortality rate after hip fracture surgery in superobese patients [J]. J Orthop Trauma, 2021, 35(6): 322-328.
[24]
Chaves PDHN, de Lima CI, Chaves DHLC, et al. Fracture risk after bariatric surgery: a systematic literature review and meta-analysis [J]. Endocr Pract, 2022, 28(1): 58-69.
[25]
Mele C, Caputo M, Ferrero A, et al. Bone response to weight loss following bariatric surgery [J]. Front Endocrinol (Lausanne), 2022, 13: 921353.
[26]
Paccou J, Caiazzo R, Lespessailles E, et al. Bariatric surgery and osteoporosis [J]. Calcif Tissue Int, 2022, 110(5): 576-591.
[27]
Zouhal H, Berro AJ, Kazwini S, et al. Effects of exercise training on bone health parameters in individuals with obesity: a systematic review and meta-analysis [J]. Front Physiol, 2021, 12: 807110.
[28]
Molina J, Morgan EL. Obesity and Orthopedic Issues [J]. 2022.
[29]
Himes C L, Reynolds S L. Effect of obesity on falls, injury, and disability [J]. J Am Geriatr Soc, 2012, 60(1): 124-129.
[30]
Neri GR, Oliveira Silvia S, Dario Juliana B, et al. Does obesity increase the risk and severity of falls in people aged 60 years and older? A systematic review and meta-analysis of observational studies [J]. J Gerontol A Biol Sci Med Sci, 2020, 75(5): 952-960.
[31]
Mitchell R J, Lord S R, Harvey L A, et al. Obesity and falls in older people: mediating effects of disease, sedentary behavior, mood, pain and medication use [J]. Arch Gerontol Geriatr, 2015, 60(1): 52-58.
[32]
Garcia PA, Queiroz LL, Caetano M, et al. Obesity is associated with postural balance on unstable surfaces but not with fear of falling in older adults [J]. Braz J Phys Ther, 2021, 25(3): 311-318.
[33]
Blain H, Miot S, Bernard PL. How can we prevent falls? [J]. 2021: 273-290.
[34]
Ilich JZ, Kelly OJ, Inglis JE, et al. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels [J]. Ageing Res Rev, 2014, 15: 51-60.
[35]
Szlejf C, Parra-Rodriguez L, Rosas-Carrasco O. Osteosarcopenic obesity: Prevalence and relation with frailty and physical performance in middle-aged and older women [J]. J Am Med Dir Assoc, 2017, 18(8): 731-733.
[36]
Ilich JZ, Inglis JE, Kelly OJ, et al. Osteosarcopenic obesity is associated with reduced handgrip strength, walking abilities, and balance in postmenopausal women [J]. Osteoporos Int, 2015, 26(11): 2587-2595.
[37]
Scott D, Seibel M, Cumming R, et al. Does combined osteopenia/osteoporosis and sarcopenia confer greater risk of falls and fracture than either condition alone in older men? the concord health and ageing in men project [J]. J Gerontol A Biol Sci Med Sci, 2019, 74(6): 827-834.
[38]
Nie YZ, Yan ZQ, Yin H, et al. Osteosarcopenic obesity and its components-osteoporosis, sarcopenia, and obesity-are associated with blood cell count-derived inflammation indices in older Chinese people [J]. BMC Geriatr, 2022, 22(1): 532.
[39]
Kelly OJ, Gilman JC, Boschiero D, et al. Osteosarcopenic obesity: current knowledge, revised identification criteria and treatment principles [J]. Nutrients, 2019, 11(4).
[40]
Cheung YM, Joham A, Marks S, et al. The obesity paradox: an endocrine perspective [J]. Intern Med J, 2017, 47(7): 727-733.
[41]
Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and Obesity: Role and Clinical Implication [J]. Front Endocrinol (Lausanne), 2021, 12: 585887.
[42]
Chen XX, Yang T. Roles of leptin in bone metabolism and bone diseases [J]. J Bone Miner Metab, 2015, 33(5): 474-485.
[43]
Bao D, Ma Y, Zhang X, et al. Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 System [J]. Sci Rep, 2015, 5: 15942.
[44]
Lee NJ, Qi Y, Enriquez RF, et al. Energy partitioning between fat and bone mass is controlled via a hypothalamic leptin/NPY relay [J]. Int J Obes (Lond), 2020, 44(10): 2149-2164.
[45]
Kirk B, Feehan J, Lombardi G, et al. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines [J]. Curr Osteoporos Rep, 2020, 18(4): 388-400.
[46]
Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases [J]. Int J Mol Sci, 2020, 21(4).
[47]
Yang J, Park OJ, Kim J, et al. Adiponectin deficiency triggers bone loss by up-regulation of osteoclastogenesis and down-regulation of osteoblastogenesis [J]. Front Endocrinol (Lausanne), 2019, 10: 815.
[48]
Leeners B, Geary N, Tobler PN, et al. Ovarian hormones and obesity [J]. Hum Reprod Update, 2017, 23(3): 300-321.
[49]
Walsh JS, Evans AL, Bowles S, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health [J]. Am J Clin Nutr, 2016, 103(6): 1465-1471.
[50]
Samuel L, Borrell LN. The effect of body mass index on optimal vitamin D status in U.S. adults: the National Health and Nutrition Examination Survey 2001-2006 [J]. Ann Epidemiol, 2013, 23(7): 409-414.
[51]
Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity [J]. Am J Physiol Cell Physiol, 2021, 320(3): C375-C391.
[52]
Oliveira MC, Vullings J, van de Loo F. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity [J]. Nutrition, 2020, 70: 110486.
[53]
Kitaura H, Marahleh A, Ohori F, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption [J]. Int J Mol Sci, 2020, 21(14).
[54]
Roy B, Curtis ME, Fears LS, et al. Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy [J]. Front Physiol, 2016, 7: 439.
[55]
Lin H, Sohn J, Shen H, et al. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing [J]. Biomaterials, 2019, 203: 96-110.
[56]
Tencerova M, Frost M, Figeac F, et al. Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility [J]. Cell Rep, 2019, 27(7): 2050-2062.
[57]
Bredella MA, Torriani M, Ghomi RH, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women [J]. Obesity (Silver Spring), 2011, 19(1): 49-53.
[58]
Schwartz AV, Sigurdsson S, Hue TF, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults [J]. J Clin Endocrinol Metab, 2013, 98(6): 2294-2300.
[59]
Sheu Y, Amati F, Schwartz AV, et al. Vertebral bone marrow fat, bone mineral density and diabetes: The Osteoporotic Fractures in Men (MrOS) study [J]. Bone, 2017, 97: 299-305.
[60]
Usategui-Martin R, Perez-Castrillon JL, Briongos-Figuero L, et al. Genetic variants in obesity-related genes and the risk of osteoporotic fracture. The Hortega Follow-up Study [J]. Front Biosci (Landmark Ed), 2022, 27(1): 32.
[61]
Zhang Q, Riddle RC, Yang Q, et al. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage [J]. Proc Natl Acad Sci U S A, 2019, 116(36): 17980-17989.
[1] 曾敬, 吴冬冬, 邵明, 范震波, 王治国, 刘培谊, 兰海峰. 高龄髋部骨折患者不同手术时机的围手术期疗效评估[J]. 中华关节外科杂志(电子版), 2024, 18(04): 445-449.
[2] 于威, 王艺凯, 杨文博, 孟春庆, 王洪, 黄玮. 陈旧性前交叉韧带胫骨止点撕脱骨折的诊疗进展[J]. 中华关节外科杂志(电子版), 2024, 18(04): 532-537.
[3] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[4] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[5] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[6] 张峻, 赵建民, 姚晓克, 吉浩宇, 越瑞祥. 增加CT对桡骨远端骨折分型的可靠性及可重复性评价[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 264-272.
[7] 房桂彬, 肖进, 傅光涛, 郑秋坚. 老年髋部骨折患者术后1年行走能力的影响因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 273-280.
[8] 张于, 程亮亮, 王峰, 赵德伟. 2枚与3枚空心钉治疗无移位股骨颈骨折的疗效对比[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 281-286.
[9] 茹江英, 廖启宇, 温国洪, 潘思华, 刘栋, 张皓琛, 牛云飞. 直接前方入路和后外侧入路半髋关节置换治疗老年痴呆股骨颈骨折的疗效比较[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 287-293.
[10] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[11] 周锐, 罗飞. 骨质疏松椎体骨折的分型进展[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 315-320.
[12] 冯献礼, 高彤, 张喜善. 骨水泥注射量及弥散程度与PVP治疗OVCF的疗效分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(04): 193-201.
[13] 李欣, 雷孝勇, 康大为. 手术与功能支具对闭合性移位肱骨干骨折患者功能结局的影响[J]. 中华老年骨科与康复电子杂志, 2024, 10(04): 215-221.
[14] 鲁宁, 魏立友, 李亮, 张玉龙. 老年桡骨远端骨折小夹板治疗后早期腕关节功能恢复的相关因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(04): 222-228.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要