切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 70 -78. doi: 10.3877/cma.j.issn.2095-9605.2019.02.002

所属专题: 文献

论著

肥胖症患者行腹腔镜Roux-en-Y胃旁路术后早期体脂含量的变化与胰岛素抵抗改善的相关性研究
李影1, 贾珏2, 付真真3, 潘瑞蓉4, 杨宁俐5, 管蔚5, 梁辉5, 周红文3,()   
  1. 1. 225001 扬州,江苏省苏北人民医院内分泌代谢科;210029 南京,南京医科大学第一附属医院内分泌代谢科
    2. 212000 镇江,江苏大学附属医院急诊科
    3. 210029 南京,南京医科大学第一附属医院内分泌代谢科
    4. 210029 南京,南京医科大学第一附属医院内分泌代谢科;212000 镇江,江苏大学附属医院内分泌代谢科
    5. 210029 南京,南京医科大学第一附属医院减重代谢外科
  • 收稿日期:2019-03-10 出版日期:2019-05-30
  • 通信作者: 周红文
  • 基金资助:
    国家自然青年科学基金项目(81500351)

Study on the relationship between the short-term changes of body fat and improvement of insulin resistance in obesity after laparoscopic Roux-en-Y gastric bypass surgery

Ying Li1, Jue Jia2, Zhenzhen Fu3, Ruirong Pan4, Ningli Yang5, Wei Guan5, Hui Liang5, Hongwen Zhou3,()   

  1. 1. Department of Endocrinology, Subei People′s Hospital of Jiangsu Province, Yangzhou, 225001; Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029
    2. Department of Emergency, the affiliated hospital of Jiangsu University, Zhenjiang 212000
    3. Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029
    4. Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029; Department of Endocrinology and Metabolism, the affiliated hospital of Jiangsu University, Zhenjiang 212000
    5. Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2019-03-10 Published:2019-05-30
  • Corresponding author: Hongwen Zhou
  • About author:
    Correspongding author: Zhou Hongwen, Email:
引用本文:

李影, 贾珏, 付真真, 潘瑞蓉, 杨宁俐, 管蔚, 梁辉, 周红文. 肥胖症患者行腹腔镜Roux-en-Y胃旁路术后早期体脂含量的变化与胰岛素抵抗改善的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2019, 05(02): 70-78.

Ying Li, Jue Jia, Zhenzhen Fu, Ruirong Pan, Ningli Yang, Wei Guan, Hui Liang, Hongwen Zhou. Study on the relationship between the short-term changes of body fat and improvement of insulin resistance in obesity after laparoscopic Roux-en-Y gastric bypass surgery[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(02): 70-78.

目的

探讨腹腔镜Roux-en-Y胃旁路术(LRYGB)后短期内对肥胖患者身体成分和糖脂代谢水平的影响,并分析体脂含量的变化与胰岛素抵抗改善的相关性。

方法

回顾性分析2017年8月至2018年10月在南京医科大学第一附属医院减重代谢外科住院的20例行LRYGB的肥胖症患者的临床资料。统计分析术前及术后3月的身体成分和糖脂代谢指标变化及相关性,计算稳态模型评估胰岛素抵抗指数(HOMA-IR)。

结果

术后3个月患者的体重、空腹血糖、空腹胰岛素(FINS)、糖化血红蛋白(HbA1c)、总甘油三酯(TG)均显著下降(P<0.05)。HOMA-IR从(7.70±4.17)降至(2.63±1.52)。腹型肥胖指标腰围、腰臀比和内脏脂肪面积明显降低(P<0.05);体脂肪含量从术前(47.89±13.01)kg降至(30.40±10.89)kg,体脂率从(43.11±1.27)%降低到(34.89±1.77)%。体脂率减少量是术后HOMA-IR和FINS改善的独立影响因素(HOMA-IR,r=0.58,P=0.007;FINS,r=0.69,P=0.001),而HbA1c的改善与腰臀比减少量独立正相关(r=0.48,P=0.031);同时,内脏脂肪面积减少量与术后TG的改变量呈独立正相关(r=0.53,P=0.016)。

结论

LRYGB术后短期内体重、腰围和腰臀比下降的同时,体脂肪含量、体脂率和内脏脂肪面积也显著下降。手术引起的体脂率的变化是术后HOMA-IR改善程度的独立影响因素,而术后腰臀比的变化是HbA1c改善的独立影响因素。LRYGB术后体脂分布的改变与胰岛素抵抗的减轻及糖脂代谢的早期获益密切相关。

Objective

To investigate the short-term effects of laparoscopic Roux-en-Y gastric bypass (LRYGB) surgery on body composition and glycolipid metabolism in obese subjects, and to analyze the correlation between body fat changes and insulin resistance improvement.

Methods

20 Chinese adults with obesity receiving LRYGB at Department of Bariatric and Metabolic Surgery, The First Affiliated Hospital with Nanjing Medical University were included to this study between Aug 2017 and Oct 2018. The body composition and glycolipid metabolism indexes were analyzed before and 3 months after surgery. Homeostasis model assessment of insulin resistance index (HOMA-IR) was calculated.

Results

Weight, fasting glucose, fasting insulin (FINS), HbA1c and total triglycerides (TG) decreased significantly 3 months after surgery (P<0.05). HOMA-IR decreased from (7.70±4.17) to (2.63±1.52). The abdominal obesity indexes, including waist circumference, waist-hip ratio and visceral fat area were remarkably decreased (P<0.05). The body fat decreased from (47.89±13.01) kg to (30.40±10.89) kg, and the body fat percentage decreased from (43.11±1.27) % to (34.89±1.77) %. After 3 months postoperatively, the reduction of body fat was an independent factor affecting the improvement of HOMA-IR and FINS (HOMA-IR, r=0.58, P=0.007; FINS, r=0.69, P=0.001), while the improvement of HbA1c was independently and positively correlated with the reduction of waist-hip ratio (r=0.48, P=0.031). Meanwhile, the decrease of visceral fat area was independently and positively correlated with the change of TG (r=0.53, P=0.016).

Conclusions

Apart from reduction in weight, waist circumference and waist-hip ratio, the levels of body fat, body fat percentage and visceral fat area also decreased significantly in obesity in the short term after LRYGB. Moreover, the variation of body fat was an independent factor affecting the improvement of HOMA-IR after surgery, and the short-term change of waist-hip ratio was strongly associated with reduced HbA1c. In the early stage after the LRYGB procedure, by regulating the distribution of body fat, it may lead to a decrease in insulin resistance and an improvement in the benefit of glycolipid metabolism.

表1 LRYGB术前20例受试者的基本资料
表2 20例肥胖受试者LRYGB术后3月身体成分指标的变化
表3 20例肥胖受试者LRYGB术后3月糖代谢指标的变化
表4 20例肥胖受试者LRYGB术后3月肝功能和脂代谢指标的变化
图1 RYGB术后3月后身体成分的改变量与糖脂代谢指标改变量的相关性分析
表5 RYGB术后3月身体成分的改变量与糖脂代谢指标改变量的相关性分析
[1]
GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years[J]. N Engl J Med, 2017, 377(1): 13-27.
[2]
Mi YJ, Zhang B, Wang HJ, et al. Prevalence and Secular Trends in Obesity Among Chinese Adults, 1991-2011[J]. Am J Prev Med, 2015, 49(5): 661-669.
[3]
Yu YH, Vasselli JR, Zhang Y, et al. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications [J]. Obesity Reviews, 2015, 16(3): 234-247.
[4]
Kanaya AM, Herrington D, Vittinghoff E, et al. Understanding the high prevalence of diabetes in U.S. south Asians compared with four racial/ethnic groups: the MASALA and MESA studies [J]. Diabetes Care, 2014, 37(6): 1621-1628.
[5]
Xueli Cai, Lili Xia, Yuesong Pan, et al. Differential role of insulin resistance and β-cell function in the development of prediabetes and diabetes in middle-aged and elderly Chinese population[J]. Diabetol Metab Syndr, 2019, 11(1): 24.
[6]
Liu J, Wu YY, Huang XM, et al. Ageing and type 2 diabetes in an elderly Chinese population: the role of insulin resistance and beta cell dysfunction[J]. Eur Rev Med Pharmacol Sci, 2014, 18(12): 1790-1797.
[7]
Wu H, Ballantyne CM. Inflammation versus host defense in obesity[J]. Cell Metab, 2014, 20(5): 708-709.
[8]
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity[J]. J Clin Invest, 2017, 127(1): 43-54.
[9]
Sasaki R, Yano Y, Yasuma T, et al. Association of Waist Circumference and Body Fat Weight with Insulin Resistance in Male Subjects with Normal Body Mass Index and Normal Glucose Tolerance[J]. Intern Med, 2016, 55(11): 1425-1432.
[10]
Premanath M, Basavanagowdappa H, Mahesh M, et al. Correlation of abdominal adiposity with components of metabolic syndrome, anthropometric parameters and Insulin resistance, in obese and non obese, diabetics and non diabetics: A cross sectional observational study. (Mysore Visceral Adiposity in Diabetes Study)[J]. Indian J Endocrinol Metab, 2014, 18(5): 676-682.
[11]
Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity[J]. Circulation, 2009, 120 (16): 1640-1645.
[12]
Ramachandran A, Ma RC, Snehalatha C. Diabetes in Asia[J]. Lancet, 2010, 375(9712): 408-418.
[13]
Guerrero-García JJ, Carrera-Quintanar L, López-Roa RI, et al. Multiple Sclerosis and Obesity: Possible Roles of Adipokines[J]. Mediators Inflamm, 2016, 2016:1-24.
[14]
El Husseny MW, Mamdouh M, Shaban S, et al. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity[J]. J Diabetes Res, 2017, 2017: 1-11.
[15]
Haiming Cao. Adipocytokines in Obesity and Metabolic Disease[J]. J Endocrinol, 2014, 220(2): T47-T59.
[16]
Goossens GH. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function[J]. Obes Facts, 2017, 10(3): 207-215.
[17]
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes[J]. N Engl J Med, 2012, 366(17): 1577-1585.
[18]
Thöni V, Pfister A, Melmer A, et al. Dynamics of Bile Acid Profiles, GLP-1, and FGF19 After Laparoscopic Gastric Banding[J]. J Clin Endocrinol Metab, 2017, 102(8): 2974-2984.
[19]
Hans PK, Guan W, Lin S, et al. Long-term outcome of laparoscopic sleeve gastrectomy from a single center in mainland China[J]. Asian J Surg, 2018, 41(3): 285-290.
[20]
Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance[J]. Biochim Biophys Acta, 2014, 1842(3): 446-462.
[21]
Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[22]
Michael P. Czech. Insulin action and resistance in obesity and type 2 diabetes[J]. Nat Med. 2017, 23(7): 804-814.
[23]
Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States[J]. Ann N Y Acad Sci, 2013, 1281(1): 64-91.
[24]
Charmaine S. Tam, Wenting Xie, William D. Johnson, et al. Defining Insulin Resistance From Hyperinsulinemic-Euglycemic Clamps[J]. Diabetes Care, 2012, 35(7): 1605-1610.
[25]
Kim JK. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo[J]. Methods Mol Biol, 2009, 560:221-238.
[26]
Kurniawan LB, Bahrun U, Hatta M,et al. Body Mass, Total Body Fat Percentage, and Visceral Fat Level Predict Insulin Resistance Better Than Waist Circumference and Body Mass Index in Healthy Young Male Adults in Indonesia[J]. J Clin Med, 2018, 7(5): 96.
[27]
Hui Liang, Wei Guan, Yanling Yang, et al. Roux-en-Y gastric bypass for Chinese type 2 diabetes mellitus patients with a BMI<28 kg/m2: a multi-institutional study[J]. The Journal of Biomedical Research, 2015, 29(2): 112-117.
[28]
Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients [J]. PeerJ, 2017, 5(S3): e3443.
[29]
Cefalu WT, Rubino F, Cummings DE. Metabolic Surgery for Type 2 Diabetes: Changing the Landscape of Diabetes Care[J]. Diabetes Care, 2016, 39(6): 857-860
[30]
Tian J, Huang S, Sun S, et al. Bile acid signaling and bariatric surgery[J]. Liver Res, 2017, 1(4): 208-213.
[31]
Blüher S, Molz E, Wiegand S, et al. Body mass index, waist circumference, and waist-to-height ratio as predictors of cardiometabolic risk in childhood obesity depending on pubertal development[J]. J Clin Endocrinol Metab, 2013, 98(8): 3384-3393.
[32]
Ling JC, Mohamed MN, Jalaludin MY, et al. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents[J]. Sci Rep, 2016, 6: 36270.
[33]
Tuomi K, Logomarsino JV. Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery[J]. Metab Syndr Relat Disord, 2016, 14(6): 279-288.
[34]
Garrido-Sanchez L, Murri M, Rivas-Becerra J, et al. Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy[J]. Surg Obes Relat Dis, 2012, 8(2):145-150.
[35]
Bennis MT, Schneider A, Victoria B, et al. The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling[J]. GeroScience, 2017, 39(1): 51-59.
[36]
Rattarasarn C. Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes [J]. Adipocyte, 2018, 7(2): 71-80.
[37]
Han SJ, Boyko EJ, Fujimoto WY, et al. Low Plasma Adiponectin Concentrations Predict Increases in Visceral Adiposity and Insulin Resistance[J]. J Clin Endocrinol Metab, 2017, 102(12): 4626-4633.
[38]
Achike FI, To NH, Wang H, et al. Obesity, metabolic syndrome, adipocytes and vascular function: A holistic viewpoint. Clin Exp Pharmacol Physiol, 2011, 38(1): 1-10.
[39]
Alkahtani SA. A cross-sectional study on sarcopenia using different methods: reference values for healthy Saudi young men[J]. BMC Musculoskelet Disord, 2017, 18(1): 119.
[40]
Roekenes J, Strømmen M, Kulseng B, et al. The Impact of Feet Callosities, Arm Posture, and Usage of Electrolyte Wipes on Body Composition by Bioelectrical Impedance Analysis in Morbidly Obese Adults[J]. Obes Facts, 2015, 8(6): 364-372.
[41]
Zhao L, Zhu L, Su Z, et al.The role of visceral adipose tissue on improvement in insulin sensitivity following Roux-en-Y gastric bypass: a study in Chinese diabetic patients with mild and central obesity[J]. Gastroenterol Rep (Oxf), 2018, 6(4): 298-303.
[42]
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, et al. Does bariatric surgery improve adipose tissue function? [J]. Obes Rev, 2016, 17(9): 795-809.
[43]
Se-Hong Kim, Ju-hye Chung, Sang-Wook Song, et al. Relationship between deep subcutaneous abdominal adipose tissue and metabolic syndrome: a case control study[J]. Diabetol Metab Syndr, 2016, 8(1): 10.
[44]
Nirmala Tilija Pun, Pil-Hoon Park. Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: Involvement of autophagy and p21/Nrf2 axis[J]. Sci Rep, 2017, 7(1): 393.
[45]
Derek K. Hagman, Ilona Larson, Jessica N. Kuzma, et al. The Short-term and Long-term Effects of Bariatric/Metabolic Surgery on Subcutaneous Adipose Tissue Inflammation in Humans[J]. Metabolism, 2017, 70(5): 12-22.
[46]
Clement K, Langin D. Regulation of inflammation-related genes in human adipose tissue [J]. J Intern Med, 2007, 262(4): 422-430.
[47]
Toro-Ramos T, Goodpaster BH, Janumala I, et al. Continued loss in visceral and intermuscular adipose tissue in weight-stable women following bariatric surgery[J]. Obesity, 2015, 23(1): 62-69.
[48]
Favre L, Marino L, Roth A, et al. The Reduction of Visceral Adipose Tissue after Roux-en-Y Gastric Bypass Is more Pronounced in Patients with Impaired Glucose Metabolism[J]. Obes Surg, 2018, 28(12): 4006-4013.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[3] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[4] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[5] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[6] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[7] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[8] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[9] 陆文琪, 赵艳茹, 李焕娣, 樊欣娜, 王佳, 李萍. 2型糖尿病患者血清SMAD2和SOX6表达及其与蛋白尿的关系[J]. 中华肾病研究电子杂志, 2024, 13(03): 145-151.
[10] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[11] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[12] 孙秀芹, 高美娟, 张琼阁, 吕凯敏, 王宏宇. 京西地区无心血管病史2型糖尿病中老年人群患心血管疾病的危险因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(03): 245-252.
[13] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[14] 颜宥彤, 赵锐, 万谦益, 张贵祥, 沈弘毅, 程中, 陈亿. GLP-1受体激动剂——司美格鲁肽的应用及安全性[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 88-93.
[15] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
阅读次数
全文


摘要