[1] |
Sun Hong, Saeedi Pouya, Karuranga Suvi, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 [J]. Diabetes Res Clin Pract, 2022, 183: 109-119.
|
[2] |
Sun X, Yan AF, Shi Z, et al. Health consequences of obesity and projected future obesity health burden in China [J]. Obesity (Silver Spring), 2022, 30(9): 1724-1751.
|
[3] |
Wang Y, Zhao L, Gao L, et al. Health policy and public health implications of obesity in China [J]. Lancet Diabetes Endocrinol, 2021, 9(7): 446-461.
|
[4] |
邹大进. 消除胰岛素抵抗,去除慢病的"共同土壤" [J]. 中华全科医师杂志, 2022, 21(11): 1007-1012.
|
[5] |
中华医学会糖尿病学分会. 胰岛素抵抗相关临床问题专家共识(2022版) [J]. 中华糖尿病杂志, 2022, 14(12): 1368-1379.
|
[6] |
Syn NL, Cummings DE, Wang LZ, et al. Association of meta-bolic-bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants [J]. Lancet, 2021, 397(10287): 1830-1841.
|
[7] |
Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: state of the art [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(3): 160-169.
|
[8] |
Ikramuddin S, Korner J, Lee WJ, et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study [J]. JAMA 2018, 319(3): 266-278.
|
[9] |
Domínguez Alvarado GA, Otero Rosales MS, Cala Duran JC, et al. The effect of bariatric surgery on metabolic syndrome: a retrospective cohort study in Colombia [J]. Health Sci Rep, 2023, 6(2): e1090.
|
[10] |
Sha Y, Huang X, Ke P, et al. Laparoscopic Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy for Type 2 Diabetes Mellitus in Nonseverely Obese Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials [J]. Obes Surg, 2020, 30(5): 1660-1670
|
[11] |
Jin ZL, Liu W. Progress in treatment of type 2 diabetes by bariatric surgery[J]. World J Diabetes, 2021, 12(8): 1187-1199
|
[12] |
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes:5 year follow-up of an open-label, single-centre, randomised controlled trial [J]. Lancet, 2015, 386(9997): 964-973.
|
[13] |
Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes [J]. N Engl J Med, 2012, 366(17): 1567-1576.
|
[14] |
Hofso D, Fatima F, Borgeraas H, et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): a single-centre,triple-blind, randomised controlled trial [J]. Lancet Diabetes Endocrinol, 2019, 7(12): 912-924.
|
[15] |
Aminian A, Vidal J, Salminen P, et al. Late relapse of diabetes after bariatric surgery: not rare, but not a failurel [J]. Diab Care, 2020, 43(3): 534-540.
|
[16] |
Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes-5-year outcomesl [J]. N Engl J Med, 2017, 376(7): 641-651.
|
[17] |
张鹏, 张忠涛. 中国腹腔镜减重与代谢外科术式选择与原则 [J/CD]. 中华普外科手术学杂志(电子版), 2023, 17(1): 6-10.
|
[18] |
Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery survey 2018: similarities and disparities among the 5 IFSO chapters [J]. Obes Surg, 2021, 31(5): 1937-1948.
|
[19] |
Alghamdi S, Mirghani H, Alhazmi K, et al. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy effects on obesity comorbidities: a systematic review and metaanalysis [J]. Front Surg, 2022, 9: 953-804.
|
[20] |
Salminen P, Grönroos S, Helmiö M, et al. Effect of laparoscopic sleeve gastrectomy vs Roux-en-Y gastric bypass on weight loss, comorbidities, and reflux at 10 years in adult patients with obesity: the SLEEVEPASS randomized clinical trial [J]. JAMA Surg, 2022, 157(8): 656-666.
|
[21] |
中国医师协会外科医师分会肥胖和糖尿病外科医师委员会, 中国肥胖代谢外科研究协作组. 中国肥胖代谢外科数据库: 2022年度报告[J]. 中华肥胖与代谢病电子杂志, 2023, 9(2): 83-91.
|
[22] |
De Luca M, Piatto G, Merola G, et al. IFSO update position statement on one anastomosis gastric bypass (OAGB) [J]. Obes Surg, 2021, 31(7): 3251-3278
|
[23] |
Level Luis, Rojas Alejandro,Piñango Silvia,et al.One anastomosis gastric bypass vs. Roux-en-Y gastric bypass:a 5-year follow-up prospective randomized trial [J]. Langenbecks Arch Surg, 2021,406(1): 171-179.
|
[24] |
Kermansaravi M, Shahmiri SS, DavarpanahJazi AH, et al. One anastomosis/mini-gastric bypass (OAGB/MGB) as revisional surgery following primary restrictive bariatric procedures: a systematic review and meta-analysis [J]. ObesSurg, 2021, 31(1): 370-383
|
[25] |
刘金钢, 胡敬尧, 陈孚. 减重代谢手术方式的改进与发展方向 [J]. 中华消化外科杂志, 2023, 22(1): 94-99.
|
[26] |
Heinonen S, Saarinen T, Meriläinen S, et al. Roux-en-Y versus one-anastomosis gastric bypass (RYSA study): weight loss, metabolic improvements, and nutrition at 1 year after surgery, a multicenter randomized controlled trial [J]. Obesity (Silver Spring), 2023, 31(12): 2909-2923.
|
[27] |
Surve A, Cottam D, Medlin W, et al. Long-term outcomesof primary single anastomosis duodeno-ileal bypass withsleeve gastrectomy (SADI-S) [J]. Surg Obes Relat Dis, 2020, 16(11): 1638-1646.
|
[28] |
Seki Y, Kasama K, Tanaka T, et al. Early gastric cancer successfully treated by endoscopic submucosal resection 1 year after laparoscopic sleeve gastrectomy with duodenaljejunal bypass [J]. Asian J Endosc Surg, 2019, 12(3): 357-361.
|
[29] |
Lin S, Li C, Guan W, et al. Three-year outcomes of sleeve gastrectomy plus jejunojejunal bypass: a retrospective casematched study with sleeve gastrectomy and gastric bypass in Chinese patients with BMI≥35 kg/m2 [J]. Obes Surg, 2021, 31(8): 3525-3530.
|
[30] |
Topart P, Becouarn G, Finel JB. Comparison of 2-year results of Roux-en-Y gastric bypass and transit bipartition with sleeve gastrectomy for superobesity [J]. Obes Surg, 2020, 30(9): 3402-3407.
|
[31] |
Ovalle F. Clinical approach to the patient with diabetes mellitus and very high insulin requirements [J]. Diabetes Res Clin Pract, 2010, 90(3): 231-242.
|
[32] |
中华医学会糖尿病学分会胰岛素抵抗学组(筹). 胰岛素抵抗评估方法和应用的专家指导意见 [J]. 中华糖尿病杂志, 2018, 10(6): 377-385.
|
[33] |
Kullmann S, Valenta V, Wagner R, et al. Brain insulin sensitivity is linked to adiposity and body fat distribution [J]. Nat Commun, 2020, 11(1): 1841.
|
[34] |
Rebelos E, Nummenmaa L, Dadson P, et al. Brain insulin sensitivity is linked to body fat distribution-the positron emission tomography perspective [J]. Eur J Nucl Med Mol Imaging, 2021, 48(4): 966-968
|
[35] |
Pournaras DJ, Nygren J, Hagstrom-Toft E, et al. Improved glucose metabolism after gastric bypass: evolution of the paradigm [J]. Surg Obes Relat Dis, 2016, 12(8): 1457-1465.
|
[36] |
Bojsen-Moller KN, Dirksen C, Jorgensen NB, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass [J]. Diabetes, 2014, 63(5): 1725-1737.
|
[37] |
Pop LM, Mari A, Zhao TJ, et al. Roux-en-Y gastric bypass compared with equivalent diet restriction: mechanistic insights into diabetes remission [J]. Diab Obes Metab, 2018, 20(7): 1710-1721.
|
[38] |
Milton-Laskibar I, Aguirre L, MacarullaMT, et al. Comparative effects of energy restriction and resveratrol intake on glycemic control improvement [J]. Biofactors, 2017, 43(3): 371-378.
|
[39] |
Pardo R, Vila M, Cervela L, et al. Calorie restriction prevents diet-induced insulin resistance independently of PGC-1-driven mitochondrial biogenesis in white adipose tissue [J]. FASEB J, 2019, 33(2): 2343-2358.
|
[40] |
Steven S, Hollingsworth KG, Small PK, et al. Calorie restriction and not glucagon-like peptide-1 explains the acute improvement in glucose control after gastric bypass in Type 2 diabetes [J]. Diabet Med, 2016, 33(12): 1723-1731.
|
[41] |
Jackson HT, Anekwe C, Chang J,et al. The Role of Bariatric Surgery onDiabetes and Diabetic Care Compliance [J]. Curr Diab Rep, 2019, 19(11): 125
|
[42] |
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease [J]. Nat Rev Endocrinol, 2019, 15(9): 507-524.
|
[43] |
Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss [J]. Obes Surg, 2005, 15(4): 462-473.
|
[44] |
Benedix F, Westphal S, Patschke R et al. Weight loss and changes in salivary ghrelin and adiponectin: comparison between sleeve gastrectomy and Roux-en-Y gastric bypass and gastric banding [J]. Obes Surg, 2011, 21(5): 616-624.
|
[45] |
Finucane FM, Luan J, Wareham NJ et al. Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals [J]. Diabetologia, 2009, 52(11): 2345-2349.
|
[46] |
Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance [J]. J Clin Invest, 2006, 116(7): 1793-1801.
|
[47] |
Perez-Pevida B, Escalada J, Miras AD, et al. Mechanisms underlying type 2 diabetes remission after metabolic surgery [J]. Front Endocrinol, 2019, 10: 641.
|
[48] |
Albaugh VL, Banan B, Antoun J, et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery [J].Gastroenterology, 2019, 156(4): 1041-1051.
|
[49] |
Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery [J]. Endocrinology, 2017, 158(12): 4139-4151.
|
[50] |
Wallenius V, Elias E, Elebring E, et al. Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal keto-genesis: a mechanism targeted by Roux-en-Y gastric bypass surgery but notby preoperative very-low-calorie diet [J]. Gut, 2020, 69(8): 1423-1431.
|
[51] |
Shi YC, Loh K, Bensellam M, et al. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice [J]. Endocrinology, 2015, 156(9): 3122-3136.
|
[52] |
Farey JE, Preda TC, Fisher OM, et al. Effect of Laparoscopic Sleeve Gastrectomy on Fasting Gastrointestinal, Pancreatic,and Adipose-Derived Hormones and on Non-Esterified Fatty Acids [J]. Obes Surg, 2017, 27(2): 399-407.
|
[53] |
McCarty TR, Jirapinyo P, Thompson CC. Effect of sleeve gastrectomy on ghrelin, GLP-1, PYY, and GIP gut hormones: a systematic review and meta-analysis [J]. Ann Surg, 2020, 272(1): 72-80.
|
[54] |
Albaugh VL, Banan B, Antoun J, et al. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery [J]. Gastroenterology, 2019, 156(4): 1041-1051.
|
[55] |
Ding L, Sousa KM, Jin L, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice [J]. Hepatology, 2016, 64(3): 760-773.
|
[56] |
Ahlin S, Cefalu C, Bondia-Pons I, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity [J]. Br J Surg, 2019, 106(9): 1178-1186.
|
[57] |
Browning MG, Pessoa BM, Khoraki J, Campos GM. Changes in bile acid metabolism, transport, and signaling as central drivers for metabolic improve-ments after bariatric surgery [J]. Curr Obes Rep, 2019, 8(2): 175-184.
|
[58] |
Wang W, Cheng Z, Wang Y, et al. Role of bile acids in bariatric surgery [J]. Front Physiol, 2019, 10: 374.
|
[59] |
Ciobârcă D, Cătoi AF, Copăescu C, et al. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status [J]. Nutrients, 2020,12(1): 235.
|
[60] |
Cӑtoi AF, Vodnar DC, Corina A, et al. GutMicrobiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives [J]. Curr Pharm Des, 2019, 25: 2038-2050.
|
[61] |
Wang MF, Li LP, Chen YZ, et al. Role of Gut Microbiome and Microbial Metabolites in Alleviating Insulin Resistance After Bariatric Surgery [J]. Obes Surg, 2021, 31(1): 327-336.
|
[62] |
Liou AP, Paziuk M, Luevano JM Jr, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity [J]. Sci Transl Med, 2013, 5(178): 178ra41.
|
[63] |
de Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time [J]. Gut, 2020, 69(3): 502-512.
|
[64] |
Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition [J]. Cell Metab, 2017, 26(4): 611-619.
|