切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 108 -112. doi: 10.3877/cma.j.issn.2095-9605.2024.02.006

青年专家论坛

肥胖与中枢神经系统调控的研究进展
王婉杰1, 宋文超1, 王键1, 倪良晨1, 洪健1, 朱孝成1, 姚立彬1,()   
  1. 1. 221006 江苏省徐州市,徐州医科大学附属医院减重代谢外科
  • 收稿日期:2024-03-10 出版日期:2024-05-30
  • 通信作者: 姚立彬

Research progress on obesity and central nervous system regulation

Wanjie Wang1, Wenchao Song1, Jian Wang1, Liangchen Ni1, Jian Hong1, Xiaocheng Zhu1, Libin Yao1,()   

  1. 1. Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
  • Received:2024-03-10 Published:2024-05-30
  • Corresponding author: Libin Yao
引用本文:

王婉杰, 宋文超, 王键, 倪良晨, 洪健, 朱孝成, 姚立彬. 肥胖与中枢神经系统调控的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 108-112.

Wanjie Wang, Wenchao Song, Jian Wang, Liangchen Ni, Jian Hong, Xiaocheng Zhu, Libin Yao. Research progress on obesity and central nervous system regulation[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(02): 108-112.

肥胖是长期能量失衡导致的病理状态,已成为全球公共卫生的重大问题。中枢神经系统在维持能量平衡中发挥重要作用,它通过调节食物摄入和能量消耗来直接影响体重。近年来,脑-肠轴机制在肥胖研究中的重要性日益显著,肠道肽与下丘脑中的受体结合,影响中枢神经系统的功能。本文综述了中枢神经系统中的稳态系统和享乐系统对摄食的调节,探讨了下丘脑在调节能量消耗中的作用。同时阐述了脑-肠轴中肠道肽和肠道微生物对中枢神经系统调节摄食的影响以及减重术后脑肠轴的改变,为肥胖的预防和治疗提供了新的研究思路。

Obesity is a pathological state caused by long-term energy imbalance and has become a major global public health issue. The central nervous system (CNS) plays a crucial role in maintaining energy balance, directly influencing body weight by regulating food intake and energy expenditure. In recent years, the significance of the brain-gut axis in obesity research has become increasingly prominent. Gut peptides interact with receptors in the brain, affecting CNS function. This article reviews the homeostatic and hedonic systems in the CNS that regulate eating, discusses the role of the hypothalamus in regulating energy expenditure, and describes how gut peptides and microbiota in the brain-gut axis influence CNS regulation of food intake and the changes in the brain-gut axis after weight loss surgery, offering new research perspectives for the prevention and treatment of obesity.

[1]
国家卫生健康委疾病预防控制局. 中国居民营养与慢性病状况报告(2020年) [M]. 北京: 人民卫生出版社, 2021.
[2]
范晓轩, 王娜, 朱丽花, 等. 肥胖相关肿瘤研究进展 [J/CD]. 中华肥胖与代谢病电子杂志, 2023, 9(3): 173-178.
[3]
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus [J]. Endocrine Reviews, 2022, 43(2): 314-328.
[4]
Deem JD, Faber CL, Morton GJ. AgRP neurons: Regulators of feeding, energy expenditure, and behavior [J]. FEBS J, 2022, 289(8): 2362-2381.
[5]
Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake [J]. Science, 2023, 381(6665): eabl7398.
[6]
Chen Y, Essner RA, Kosar S, et al. Sustained NPY signaling enables AgRP neurons to drive feeding [J]. Elife, 2019, 8: e46348.
[7]
Quarta C, Claret M, Zeltser LM, et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view [J]. Nat Metab, 2021, 3(3): 299-308.
[8]
Cabral A, Fernandez G, Tolosa MJ, et al. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner [J]. Mol Metab, 2020, 32: 69-84..
[9]
Li MM, Madara JC, Steger JS, et al. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits [J]. Neuron, 2019, 102(3): 653-667. e6.
[10]
Varela L, Horvath TL. Parallel Paths in PVH Control of Feeding [J]. Neuron, 2019, 102(3): 514-516.
[11]
Liu CM, Spaulding MO, Rea JJ, et al. Oxytocin and Food Intake Control: Neural, Behavioral, and Signaling Mechanisms [J]. Int J Mol Sci, 2021, 22(19): 10859.
[12]
Qiu W, Hutch CR, Wang Y, et al. Multiple NTS neuron populations cumulatively suppress food intake [J]. Elife, 2023, 12: e85640.
[13]
sang AH, Nuzzaci D, Darwish T, et al. Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons [J]. Mol Metab, 2020, 42: 101070.
[14]
Chen J, Cheng M, Wang L, et al. A Vagal-NTS Neural Pathway that Stimulates Feeding [J]. Curr Biol, 2020, 30(20): 3986-3998. e5.
[15]
Woodward ORM, Gribble FM, Reimann F, et al. Gut peptide regulation of food intake- evidence for the modulation of hedonic feeding [J]. J Physiol, 2022, 600(5): 1053-1078.
[16]
Marcos JL, Olivares-Barraza R, Ceballo K, et al. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake [J]. Int J Mol Sci, 2023, 24(2): 1468.
[17]
Rossi MA, Stuber GD. Overlapping Brain Circuits for Homeostatic and Hedonic Feeding [J]. Cell Metab, 2018, 27(1): 42-56.
[18]
Tran LT, Park S, Kim SK, et al. Hypothalamic control of energy expenditure and thermogenesis [J]. Exp Mol Med, 2022, 54(4): 358-369.
[19]
Zink AN, Bunney PE, Holm AA, et al. Neuromodulation of orexin neurons reduces diet-induced adiposity [J]. Int J Obes (Lond), 2018, 42(4): 737-745.
[20]
Ruocco C, Malavazos AE, Ragni M, et al. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging [J]. Pharmacol Res, 2023, 195: 106892.
[21]
Liu J, Lin L. Small molecules for fat combustion: targeting thermosensory and satiety signals in the central nervous system [J]. Drug Discov Today, 2019, 24(1): 300-306.
[22]
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut–brain axis in energy and glucose metabolism [J]. Experimental & Molecular Medicine, 2022, 54(4): 377.
[23]
Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity [J]. Nature Reviews. Endocrinology, 2017, 13(6): 338-351.
[24]
Al Massadi O, Nogueiras R, Dieguez C, et al. Ghrelin and food reward [J]. Neuropharmacology, 2019, 148: 131-138.
[25]
Trapp S, Brierley DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment [J]. Br J Pharmacol. 2022, 179(4): 557-570.
[26]
Oertel M, Ziegler CG, Kohlhaas M, et al. GLP-1 and PYY for the treatment of obesity: a pilot study on the use of agonists and antagonists in diet-induced rats [J]. Endocrine Connections, 2024, 13(3): e230398.
[27]
Alonso AM, Cork SC, Phuah P, et al. The vagus nerve mediates the physiological but not pharmacological effects of PYY3-36 on food intake [J]. Molecular Metabolism, 2024, 81: 101895.
[28]
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(11): 655-672.
[29]
de Wouters d'Oplinter A, Rastelli M, Van Hul M, et al. Gut microbes participate in food preference alterations during obesity [J]. Gut Microbes, 2021, 13(1): 1959242.
[30]
Gao K, Mu CL, Farzi A, et al. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain [J]. Adv Nutr, 2020, 11(3): 709-723.
[31]
刘金钢. 减重手术术式选择及对机体代谢的调节 [J]. 肠外与肠内营养, 2020, 27(1): 1-4.
[32]
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation [J]. J Inflamm Res, 2023, 16: 5495-5514.
[33]
Gasmi A, Bjørklund G, Mujawdiya PK, et al. Gut microbiota in bariatric surgery [J]. Crit Rev Food Sci Nutr, 2023, 63(28): 9299-9314.
[1] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[2] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[3] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[4] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[5] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[6] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[7] 玉素江·图荪托合提, 韩琦, 麦麦提艾力·麦麦提明, 黄旭东, 王浩, 克力木·阿不都热依木, 艾克拜尔·艾力. 腹腔镜袖状胃切除或联合食管裂孔疝修补术对肥胖症合并胃食管反流病的中期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 501-506.
[8] 刘见, 杨晓波, 何均健, 等. 应用电钩三孔法腹腔镜袖状胃切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(06): 363-364.
[9] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[10] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[11] 中国医师协会外科医师分会肥胖代谢病综合管理与护理专家工作组, 中国医师协会外科医师分会肥胖和代谢病外科专家工作组, 中国肥胖代谢外科研究协作组. 肥胖代谢外科医学科普中国专家共识(2024 版)[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 227-234.
[12] 向林, 江云颂, 程吕佳, 关炳生, 杨景哥. 生长素释放肽在肥胖治疗中的潜在应用价值研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 235-241.
[13] 李兆, 李兆鹏, 宋逸, 郭栋, 陈栋, 李宇. 腹腔镜袖状胃切除术后残胃容积的测量方案及评价[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 242-247.
[14] 王鹏鹏, 周涵苓, 孟化, 刘宝胤. 减重手术后皮肤松弛的塑形手术现状与展望[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 248-254.
[15] 张鑫, 刘志芬, 郭云童. 肥胖与抑郁症相关性的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 255-260.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?