切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2022, Vol. 08 ›› Issue (04) : 249 -255. doi: 10.3877/cma.j.issn.2095-9605.2022.04.006

论著

葡萄糖目标范围内时间与2型糖尿病患者尿微量白蛋白水平的相关性研究
沈地1, 权莉1, 梁存禹1, 孟齐1, 艾比拜·玉素甫1,()   
  1. 1. 830000 乌鲁木齐,新疆医科大学第一附属医院内分泌科
  • 收稿日期:2022-06-04 出版日期:2022-11-30
  • 通信作者: 艾比拜·玉素甫

Study on the correlation between time within the target range of glucose and urinary microalbumin level in patients with type 2 diabetes

Di Shen1, Li Quan1, Cunyu Liang1, Qi Meng1, Yusufu Aibibai·1,()   

  1. 1. Endocrine Department , the First Affiliated Hospital of Xinjiang Medical University , Urumqi 830000, China
  • Received:2022-06-04 Published:2022-11-30
  • Corresponding author: Yusufu Aibibai·
引用本文:

沈地, 权莉, 梁存禹, 孟齐, 艾比拜·玉素甫. 葡萄糖目标范围内时间与2型糖尿病患者尿微量白蛋白水平的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 249-255.

Di Shen, Li Quan, Cunyu Liang, Qi Meng, Yusufu Aibibai·. Study on the correlation between time within the target range of glucose and urinary microalbumin level in patients with type 2 diabetes[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2022, 08(04): 249-255.

目的

探讨葡萄糖目标范围内时间(TIR)与尿微量白蛋白水平之间的相关关系。

方法

本研究纳入了2020年1月到2022年3月于新疆医科大学内分泌科住院的126例2型糖尿病患者的病例资料,以尿白蛋白/肌酐比值(UACR)30 mg/g为切入点,UACR<30 mg/g为NUA组(80例),30 mg/g≤UACR<300 mg/g为UA组(46例),比较两组指标间差异性及其与UACR水平的相关性,采用二元Logistic回归模型分析UACR水平的危险因素,对两组内指标进行差异性分析,进一步采用多元Logistic回归分析各指标贡献差异。同时对TIR进行分层分析,比较不同组UACR的差异,最后对相关指标行Pearson相关性分析。

结果

两组间年龄、病程、血糖平均值、TIR、低于葡萄糖目标范围内时间(TBR)、糖化血红蛋白(HbAlc)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、估算肾小球滤过率(eGFR)、肌酐、胱抑素C、变异系数差异有统计学意义(P<0.05);TIR、LDL-C、胱抑素C、变异系数为尿微量白蛋白发生的相关因素(P<0.05)。TIR和UACR水平之间呈负相关(P<0.05);LDL-C、胱抑素C、变异系数与UACR水平呈正相关(P<0.05)。

结论

TIR与2型糖尿病患者尿微量白蛋白水平呈负相关,TIR水平降低时,尿微量白蛋白显著上升。TIR作为血糖监测的重要指标,可很好评价糖尿病患者血糖控制情况并预测微量白蛋白尿发生。

Objective

To explore the correlation between time in range of glucose (TIR, Time In Range) and urinary microalbumin level.

Methods

this study, 126 patients with type 2 diabetes who were hospitalized in the Department of Endocrinology, Xinjiang Medical University from January 2020 to March 2022 were included. The urinary albumin/creatinine ratio (UACR) of 30 mg/g was used as the entry point, the ratio less than 30 mg/g was used as the NUA group (80 cases), and 30 mg/g≤UACR<300 mg/g was used as the UA group (46 cases). The difference between the two groups of indicators and their correlation with UACR level were compared, the risk factors of UACR level were analyzed by binary Logistic regression model, and the difference of indicators in the two groups was analyzed, and the contribution difference of each indicator was analyzed by multiple Logistic regression. At the same time, hierarchical TIR analysis was performed to compare the differences between different groups of UACR, and finally Pearson correlation analysis was performed for related indicators.

Results

There were statistically significant differences in age, disease course, mean blood glucose, TIR, time below the glucose target range (TBR), glycosylated hemoglobin, triglycerides, high density lipoprotein cholesterol, low density lipoprotein cholesterol, estimated glomerular filtration rate (eGFR), creatinine, cystatin C and coefficient of variation between the two groups (P<0.05). TIR, low density lipoprotein, cystatin C and coefficient of variation were correlated with the occurrence of urinary microalbumin (P<0.05). There was a negative correlation between TIR and UACR level (P<0.05). LDL-C, cystatin C and coefficient of variation were positively correlated with UACR level (P<0.05).

Conclusions

The level of urinary microalbumin in type 2 diabetes patients is negatively correlated, and when the level of TIR decreases, the level of urinary microalbumin increases significantly. As an important indicator of blood glucose monitoring, TIR can well evaluate the blood sugar control of diabetic patients and predict the occurrence of microalbuminuria.

图1 两组患者动态血糖监测指标比较
图2 两组患者动态血糖监测指标比较
表1 微量蛋白尿正常组和异常组一般资料比较
表2 两组患者动态血糖监测指标比较
表3 TIR与UACR异常的二元Logistic回归分析
表4 TIR与UACR异常的多元Logistic回归分析
表5 TIR分层分析结果
表6 TIR、LDL、胱抑素C及变异系数与UACR的Pearson相关性分析
[1]
Battelino T, Danne T, Bergenstal R. Clinical Targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range [J]. Diabetes care, 2019, 42 (8): 1593-1603.
[2]
Díaz-Soto G, Bahíllo-Curieses M, Jimenez R. The relationship between glycosylated hemoglobin, time-in-range and glycemic variability in type 1 diabetes patients under flash glucose monitoring [J]. Endocrinologia, diabetes y nutricion, 2021, 68 (7): 465-471.
[3]
Novodvorsky P, Bernjak A, Chow E. Diurnal Differences in risk of cardiac arrhythmias during spontaneous hypoglycemia in young people with type 1 diabetes [J]. Diabetes care, 2017, 40(5): 655-662.
[4]
Nielsen S, Reinhard H, Zdunek D. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients [J]. Diabetes research and clinical practice, 2012, 97 (1): 71-76.
[5]
Choudhury D, Tuncel M, Levi M. Diabetic nephropathy — a multifaceted target of new therapies [J]. Discovery medicine, 2010, 10(54): 406-415.
[6]
Iyengar S, Abboud H, Goddard K. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND) [J]. Diabetes, 2007, 56(6): 1577-1585.
[7]
Collins A, Foley R, Chavers B. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States [J]. American journal of kidney diseases : the official journal of the National Kidney Foundation, 2012, 59 (1 Suppl 1): A7, e1-420.
[8]
Colhoun H, Lee E, Bennett P. Risk factors for renal failure: the WHO Mulinational Study of Vascular Disease in Diabetes [J]. Diabetologia, 2001, 4(2): S46-53.
[9]
Thomas W, Shen Y, Molitch M. Rise in albuminuria and blood pressure in patients who progressed to diabetic nephropathy in the Diabetes Control and Complications Trial [J]. Journal of the American Society of Nephrology: JASN, 2001, 12(2): 333-340.
[10]
Lu J, Ma X, Zhou J. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes [J]. Diabetes care, 2018, 41(11): 2370-2376.
[11]
Beck R, Bergenstal R, Riddlesworth T. Validation of time in range as an outcome measure for diabetes clinical trials [J]. Diabetes care, 2019, 42(3): 400-405.
[12]
Yoo J, Choi M, Ahn J. Association between continuous glucose monitoring-derived time in range, other core metrics, and albuminuria in type 2 diabetes [J]. Diabetes technology & therapeutics, 2020, 22(10): 768-776.
[13]
Sheng X, Xiong G, Yu P. The correlation between time in range and diabetic microvascular complications utilizing information management platform [J]. International journal of endocrinology, 2020, 2020: 8879085.
[14]
Kowalski A, Dutta S. It's time to move from the A1c to better metrics for diabetes control [J]. Diabetes technology & therapeutics, 2013, 15 (3): 194-196.
[1] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[2] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[3] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[4] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[5] 贾英民, 张术姣, 耿运玲, 曹梓静, 王耀献, 吕仁和, 刘玉宁, 刘伟敬. 蝉花菌丝联合海昆肾喜胶囊对糖尿病肾小管上皮细胞自噬-溶酶体通路的影响[J]. 中华肾病研究电子杂志, 2022, 11(04): 212-218.
[6] 潘娟, 乔晞. 环状核糖核酸:糖尿病肾病治疗新靶点[J]. 中华肾病研究电子杂志, 2022, 11(01): 44-47.
[7] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[8] 王书缘, 袁震, 王德坤, 谭小月. 自噬在糖尿病肾病发病及治疗中的作用与机理[J]. 中华肾病研究电子杂志, 2021, 10(06): 347-351.
[9] 朱艺平, 陈一平, 赵艳英, 陆玮玮, 牙侯军, 苏复霞. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 572-578.
[10] 黄新梅, 陆敬雁, 高红梅, 司雅蓉, 谢守嫔, 陈华琴. 糖尿病肾病患者血清三叶因子3与血管生成抑制蛋白1的水平变化及临床意义[J]. 中华临床医师杂志(电子版), 2021, 15(07): 509-514.
[11] 孙轶男, 王英丽, 张志刚. 王英丽教授治疗糖尿病肾病的临床经验[J]. 中华针灸电子杂志, 2021, 10(04): 175-176.
[12] 冉启玉, 杜鹏宇, 孔蕾, 孙冰. 神经酰胺与糖尿病及其并发症关系研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 158-162.
[13] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[14] 王慧卿, 李银玉, 张继敏, 黄正丽, 孙喜明, 薛少青, 焦爱富, 赵慧媛, 尉杰忠. 血清adipsin及皮下脂肪面积与早期糖尿病肾病的相关性分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 256-262.
[15] 何圣清, 袁唯唯, 孟莞瑞, 符青松, 郑晓斌, 武红梅. 达格列净联合二甲双胍治疗对早期2型糖尿病肾病患者肾小管功能和血清Klotho的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 236-242.
阅读次数
全文


摘要