切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2021, Vol. 07 ›› Issue (04) : 260 -265. doi: 10.3877/cma.j.issn.2095-9605.2021.04.008

综述

不同组织慢性炎症的特点及其在胰岛素抵抗发展中的作用
于莉莉1, 李艳花1, 张朝阳1, 邓一鸣1, 林剑泷1, 冯志伟1,()   
  1. 1. 453003 新乡,新乡医学院基础医学院免疫学系
  • 收稿日期:2021-06-26 出版日期:2021-11-30
  • 通信作者: 冯志伟
  • 基金资助:
    国家自然科学基金(81500675、82070895); 2020年大学生创新创业训练计划项目(S202010472059); 新乡医学院基础医学院培育项目(JCYXYKY202023)

Characteristics of chronic inflammation in different tissues and their effects on insulin resistance

Lili Yu1, Yanhua Li1, Chaoyang Zhang1   

  • Received:2021-06-26 Published:2021-11-30
引用本文:

于莉莉, 李艳花, 张朝阳, 邓一鸣, 林剑泷, 冯志伟. 不同组织慢性炎症的特点及其在胰岛素抵抗发展中的作用[J]. 中华肥胖与代谢病电子杂志, 2021, 07(04): 260-265.

Lili Yu, Yanhua Li, Chaoyang Zhang. Characteristics of chronic inflammation in different tissues and their effects on insulin resistance[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2021, 07(04): 260-265.

图1 肥胖诱导的组织慢性炎症 注:肥胖可以引起组织慢性炎症状态,是胰岛素抵抗和T2DM的主要诱因。肥胖诱导的慢性炎症对脂肪组织,肌肉,肝脏,胰岛和肠道产生了一系列影响,这些炎症状态改变包括免疫细胞的浸润和细胞因子的分泌等,是肥胖相关代谢性疾病发生和发展的关键
图2 肥胖慢性炎症的自我反馈过程 注:肥胖会导致内质网应激、缺氧、脂毒性、菌群失调及激素紊乱,进而启动实质细胞内促炎症途径的激活(第一步)。在实质细胞激活后,它们分泌的多种趋化因子(第二步),引起巨噬细胞的趋化和迁移以及其他免疫细胞浸润组织中(第三步)。这些免疫细跑具有促炎作用,分泌多种因子,包括细胞因子及代谢组织循环中其他信号分子等,并通过局部旁分泌作用,导致脂肪细胞、肝细胞、肌细胞产生胰岛素抵抗和β细胞内GSIS下降,最终产生T2DM(第四步)
[1]
Rebuffat SA, Sidot E, Guzman C, et al. Adipose tissue derived-factors impaired pancreatic β-cell function in diabetes [J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2018, 1864(10): 3378-3387.
[2]
Yue T, Xu S, Huang LL, et al. Obesity and insulin resistance: Pathophysiology and treatment [J]. Drug Discovery Today, 2021, 11(01): 10-16..
[3]
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease [J]. Journal of Innate Immunity, 2022, 14(1): 4-30.
[4]
Yu LL, Li YH, Du CC, et al. Pattern Recognition Receptor-Mediated Chronic Inflammation in the Development and Progression of Obesity-Related Metabolic Diseases [J]. Mediators of Inflammation, 2019, 2019: 5271295.
[5]
Chung KJ, Nati M, Chavakis T, et al. Innate immune cells in the adipose tissue [J]. Reviews in endocrine & Metabolic Disorders, 2018, 19(4): 283-292.
[6]
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization [J]. Journal of Clinical Investigation, 2007, 117(1): 175-184.
[7]
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas [J]. Journal of Clinical Investigation, 2012, 122(3): 787-795.
[8]
Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system [J]. Nature Reviews Endocrinology, 2016, 12(1): 15-28.
[9]
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders [J]. Nature, 2017, 542(7640): 177-185.
[10]
Nussbaum JC, Van-Dyken SJ, Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis [J]. Nature, 2013, 502(7470): 245-248.
[11]
Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase [J]. Nature Medicine, 2012, 18(9): 1407-1412.
[12]
Zatterale F, Longo M, Naderi J, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes [J]. Frontiers in Physiology, 2019, 10: 1607.
[13]
Wang Q, Wu HZ. T Cells in Adipose Tissue: Critical Players in Immunometabolism[J]. Frontiers in Immunology, 2018, 9: 2509.
[14]
Bapat SP, Myoung-Suh J, Fang S, et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance [J]. Nature, 2015, 528(7580): 137-141.
[15]
McLaughlin T, Liu LF, Lamendola C, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34(12): 2637-2643.
[16]
Gola A, Dorrington MG, Speranza E, et al. Commensal-driven immune zonation of the liver promotes host defence [J]. Nature, 2021, 589(7840): 131-136.
[17]
Liu X, Yu L, Hassan W, et al. The Duality of Kupffer Cell Responses in Liver Metabolic States [J]. Current Molecular Medicine, 2016, 16(9): 809-819.
[18]
Wan MJ, Han JW,, Ding Lili, et al. Novel Immune Subsets and Related Cytokines: Emerging Players in the Progression of Liver Fibrosis [J]. Frontiers in Medicine, 2021, 8: 604894.
[19]
Koyama Y, and Brenner DA. Liver inflammation and fibrosis [J]. Journal of Clinical Investigation, 2017, 127(1): 55-64.
[20]
Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease [J]. Trends in Endocrinology and Metabolism, 2021, 32(7): 500-514.
[21]
Ray I, Mahata SK, De RK. Obesity: An Immunometabolic Perspective [J]. Frontiers in Endocrinology, 2016, 7: 157.
[22]
Fink LN, Oberbach A, Costford SR, et al. Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes [J]. Diabetologia, 2013, 56(7): 1623-1628.
[23]
Khan, IM, Perrard XY, Brunner G, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance [J]. International Journal of Obesity, 2015, 39(11): 1607-1618.
[24]
Citro A, Campo F, Dugnani E, et al. Innate Immunity Mediated Inflammation and Beta Cell Function: Neighbors or Enemies [J]. Frontiers in Endocrinology, 2020, 11: 606332.
[25]
Cosentino C, Regazzi R. Crosstalk between Macrophages and Pancreatic β-Cells in Islet Development, Homeostasis and Disease [J]. International Journal of Molecular Sciences, 2021, 22(4): 1765.
[26]
Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes [J]. Seminars in Immunopathology, 2019, 41(4): 501-513.
[27]
Winer, DA, Luck H, Tsai S, et al. The Intestinal Immune System in Obesity and Insulin Resistance [J]. Cell Metabolism, 2016, 23(3): 413-426.
[28]
Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, et al. The Role of the Gut Microbiota in Bile Acid Metabolism [J]. Annals of Hepatology, 2017, 16 Suppl 1: S21-S26.
[29]
Torres-Fuentes C, Schellekens H, Dinan TG, et al. The microbiota-gut-brain axis in obesity [J]. The Lancet Gastroenterology & Hepatology, 2017, 2(10): 747-756.
[30]
Cox, AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota [J]. Lancet Diabetes & Endocrinology, 2015, 3(3): 207-215.
[31]
Moffa S, Mezza T, Cefalo CMA, et al. The Interplay between Immune System and Microbiota in Diabetes[J]. Mediators of Inflammation, 2019, 2019: 9367404.
[32]
Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta [J]. Science, 2001, 293(5535): 1673-1677.
[33]
Hawley, SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-activated protein kinase [J]. Science, 2012, 336(6083): 918-922.
[34]
Ghanbari M, Momen Maragheh S, Aghazadeh A, et al. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies [J]. International Immunopharmacology, 2021, 96: 107765.
[35]
Rissanen A, Howard CP, Botha J, et al. Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial [J]. Diabetes Obesity & Metabolism, 2012, 14(12): 1088-1096.
[36]
Nanjan MJ, Mohammed M, Prashantha Kumar BR, et al. Thiazolidinediones as antidiabetic agents: A critical review [J]. Bioorganic Chemistry, 2018, 77: 548-567.
[37]
Yu SY, Cheng Y, Zhang LX, et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats [J]. Stem Cell Research & Therapy, 2019, 10(1): 333.
[38]
Moon KC, Suh HS, Kim KB, et al. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers [J]. Diabetes, 2019, 68(4): 837-846.
[39]
Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes [J]. Inflammopharmacology, 2020, 28(2): 345-362.
[40]
Zhao YS, Chen B, Shen J, et al. The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity [J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 1459497.
[41]
Das B, Das M, Kalita A, et al. The role of Wnt pathway in obesity induced inflammation and diabetes: a review [J]. Journal of Diabetes & Metabolic Disorders, 2021, 20(2): 1871-1882.
[1] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[2] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[3] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[4] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[5] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[6] 刘超凡, 王文越, 杨珵璨, 朱冬梓, 王兵. 胃袖状切除术上调循环Nrg4浓度抑制肝脏脂肪酸合成改善肥胖小鼠肝脏脂肪变性[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 133-136.
[7] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[8] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[9] 唐小久, 胡曼, 许必君, 肖亚. 肥胖合并胃食管反流病患者严重程度与其焦虑抑郁及营养状态的相关性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 360-364.
[10] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[11] 乔晓红, 薛晓峰, 查振刚, 蔡若莲, 牛建军, 任立新, 杨慧峰, 李雪梅, 郭秀珍. 骨关节炎患者血清中Vaspin的表达及其与关节病变严重程度的关系[J]. 中华临床医师杂志(电子版), 2024, 18(02): 152-158.
[12] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[13] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
[14] 邢颖, 闫文貌. 单孔腹腔镜袖状胃切除术发展现状[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 133-137.
[15] 冯婷, 叶俊钊. 粪菌移植治疗肥胖及代谢相关脂肪性肝病的临床研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 138-144.
阅读次数
全文


摘要