切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2017, Vol. 03 ›› Issue (04) : 198 -207. doi: 10.3877/cma.j.issn.2095-9605.2017.04.005

所属专题: 文献

专题论著

Roux-en-Y胃旁路手术和袖状胃切除术对高尿酸血症大鼠代谢的影响及机制研究
卢存龙1, 李宇1, 李龙1, 石拓1, 朱厚鑫1, 周岩冰1,()   
  1. 1. 266000 青岛,青岛大学附属医院胃肠外科
  • 收稿日期:2017-10-22 出版日期:2017-11-30
  • 通信作者: 周岩冰
  • 基金资助:
    山东省自然科学基金资助项目(ZR2012HM046)

Effects and mechanisms of Roux-en-Y gastric bypass and sleeve gastrectomy on metabolism in hyperuricemic rat model

Cunlong Lu1, Yu Li1, Long Li1, Tuo Shi1, Houxin Zhu1, Yanbing Zhou1,()   

  1. 1. Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Shandong 266000, China
  • Received:2017-10-22 Published:2017-11-30
  • Corresponding author: Yanbing Zhou
  • About author:
    Corresponding author: Zhou Yanbing, Email:
引用本文:

卢存龙, 李宇, 李龙, 石拓, 朱厚鑫, 周岩冰. Roux-en-Y胃旁路手术和袖状胃切除术对高尿酸血症大鼠代谢的影响及机制研究[J/OL]. 中华肥胖与代谢病电子杂志, 2017, 03(04): 198-207.

Cunlong Lu, Yu Li, Long Li, Tuo Shi, Houxin Zhu, Yanbing Zhou. Effects and mechanisms of Roux-en-Y gastric bypass and sleeve gastrectomy on metabolism in hyperuricemic rat model[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2017, 03(04): 198-207.

目的

探究两种主要的减重手术Roux-en-Y胃旁路手术(RYGB)和袖状胃切除术(SG)对高尿酸血症(HUA)大鼠血尿酸(SUA)、糖代谢、脂代谢的影响,并通过观察术后炎症性指标,包括脂多糖(LPS)、白介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)和黄嘌呤氧化酶(XO)水平的变化,来探究其相关的机制。

方法

Wistar大鼠随机分为模型组(Model)和对照组(Control),模型组给予含酵母膏的标准饲料饮食和腺嘌呤、氧嗪酸钾灌胃处理建立高尿酸血症大鼠模型,对照组自由进食正常饲料,模型组经上述处理三周后随机分为三个亚组:RYGB组、SG组和假手术组(Sham),随后进行不同手术处理。术前与术后2、4、6、8周分别对大鼠的体重、食物摄入量进行记录。术前与术后对血清尿酸、肌酐(Cr)和尿素氮(BUN)、空腹血糖(FPG),空腹胰岛素(FINS)、胰岛素抵抗指数(HOMA-IR)、血清甘油三酯(TG)和总胆固醇(TC)等生化指标和LPS、IL-6、TNF-α等炎症指标和XO浓度进行检测。

结果

术前,与对照组相比,模型组大鼠血尿酸、血尿素氮、肌酐和空腹血糖、血脂等生化指标及LPS、IL-6和TNF-α等炎性指标水平显著增高(P<0.001)。术后RYGB组和SG组较Sham组体重、食物摄入量减少,SUA、BUN和Cr水平,FPG、FINS、HOMA-IR、血清TG和TC水平显著降低(P<0.01)。与Sham组相比,术后RYGB和SG组血清LPS、IL-6、TNF-α水平和XO浓度显著降低(P<0.01)。

结论

胃旁路手术和袖状胃切除术能够降低高尿酸血症大鼠血尿酸水平,同时改善高尿酸血症导致的血糖、血脂代谢紊乱,其机制可能与减重手术减少体脂量、缓解炎症反应和胰岛素抵抗、调控黄嘌呤氧化酶的表达有关。

Objective

To investigate the effects of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) on metabolism of serum uric acid, blood glucose and lipid profiles in hyperuricemic rat model, and by observing the alteration of serum LPS, IL-6, TNF-α and XO to explore the related mechanism.

Methods

Forty Wistar rats were randomly divided into hyperuricemic model group and control group. The model group were administered high purine food and orally intragastrical adenine and potassium oxonate to establish the hyperuricemic rat model while the control group was fed on standard food. Three weeks later, the model group was assigned to three subgroups: RYGB, SG, Sham. Then different operational procedures were performed. Body weight and amounts of food intake were recorded before the surgery and 2, 4, 6, 8 weeks following surgical operations. Pre- and postsurgical serum uric acid, BUN and creatinine, fasting plasm glucose, fasting insulin concentration, HOMA-IR, triglyceride and total cholesterol were assessed. Serum LPS, IL-6, TNF-α level and concentration of XO were measured.

Results

Preoperatively, compared with control group, serum uric acid, urea nitrogen, creatinine level of model group significantly increased, indicating that the established hyperuricemic rat model by high purine food intake and oral intragastrical administration of adenine and potassium oxonate was successful. The biochemical index of fasting blood glucose and lipid profiles and inflammatrory markers LPS, IL-6, TNF-α in model groups was much higher than that in control group (P<0.001). After surgery, compared with Sham group, body weight, amount of food intake, serum uric acid serum urea nitrogen and creatinine levels and fasting plasm glucose, serum insulin, insulin resistance index(HOMA-IR score), serum triglyceride and total cholesterol levels were significantly decreased (P<0.01). RYGB and SG surgery lowered serum LPS, IL-6, TNF-α and XO concentration compared with Sham group (P<0.01).

Conclusions

RYGB and SG surgery significantly reduced serum uric acid level and improved the imbalance of metabolism of glucose and lipid profiles of hyperuricemic rat. Mechanically, RYGB and SG surgery might reduce serum uric acid by reducing fat mass, relieving inflammation and insulin resistance as well as regulating the expression of XO.

表1 RYGB和 SG术后各组大鼠体重的变化(±s, g)
表2 RYGB和SG术后各组大鼠食物摄入量的变化(±s, g/week)
图1 RYGB和 SG 术后各组大鼠体重的变化
图2 RYGB和 SG 术后各组大鼠食物摄入量的变化
表3 RYGB和 SG术后各组大鼠血清生化指标的变化(±s
? Control Sham
? 0 W(n=10) 2 W(n=10) 4 W(n=10) 6 W(n=10) 8 W(n=10) 0 W(n=10) 2 W(n=10) 4 W(n=10) 6 W(n=10) 8 W(n=10)
SUA (umol/L) 145.6±6.37 141.9±8.51 149.35±6.12 149.55±5.98 150.1±7.0 199.5±12.8a 196.5±11.6 182.74±10.67 179.31±10.9 175.46±13.3
BUN (mmol/L) 6.19±0.67 6.92±1.26 6.31±0.54 6.76±0.65 6.65±0.78 13.68±1.47a 13.92±1.08 13.35±1.80 12.03±1.60 10.75±1.88
CR (umol/L) 64.81±8.52 67.7±9.51 69.33±5.83 70.48±5.48 70.58±5.32 109.65±10.6a 109.51±14.6 101.32±13.86 96.20±13.27 87.27±10.87
FPG (mmol/L) 5.15±0.74 5.14±0.77 5.62±0.31 5.56±0.51 5.53±0.61 7.17±0.64a 7.40±0.70 7.36±0.67 7.12±0.60 7.16±0.81
FINS (mIU/L) 10.38±0.62 10.48±0.56 10.41±0.63 10.03±0.42 10.28±0.54 14.18±0.65a 13.84±0.62 13.32±0.45 12.80±0.30 12.43±0.44
HOMA-IR 1.52±0.11 1.53±0.096 1.56±0.103 1.47±0.096 1.50±0.076 2.23±0.16a 2.21±0.173 2.12±0.109 2.07±0.090 2.02±0.148
TG (mmol/L) 0.89±0.16 1.03±0.17 1.09±0.17 1.10±0.22 1.19±0.24 1.67±0.11a 1.64±0.25 1.73±0.198 1.87±0.23 1.87±0.23
TC (mmol/L) 1.57±0.26 1.60±0.29 1.61±0.16 1.60±0.21 1.71±0.18 2.34±0.27a 2.35±0.28 2.41±0.36 2.50±0.29 2.65±0.15
? RYGB SG
? 0 W(n=10) 2 W(n=8) 4 W(n=8) 6 W(n=8) 8 W(n=8) 0 W(n=10) 2 W(n=10) 4 W(n=10) 6 W(n=10) 8 W(n=10)
SUA (umol/L) 195.1±11.6a 187.05±10.23 178.15±10.70 168.5±6.36c 159.33±8.54c 195.0±16.7a 187.1±14.16 176.65±11.58 166.4±8.30c 157.74±6.16c
BUN (mmol/L) 13.81±1.45a 12.81±1.06 11.17±1.11b 10.14±1.00b 8.73±0.92c 13.35±0.88a 12.64±1.71b 10.74±2.87c 9.14±2.50d 8.33±1.78c
CR (umol/L) 106.0±11.72a 97.95±12.69 87.03±10.01c 77.91±9.77c 70.92±7.06c 111.9±14.20a 102.67±12.4 93.31±7.68c 81.51±7.28c 76.98±7.41c
FPG (mmol/L) 7.14±1.11a 6.78±0.85 6.36±0.75b 6.10±0.67c 6.09±0.63c 7.46±0.65a 6.90±0.50 6.43±0.63b 6.23±0.70c 6.21±0.51c
FINS (mIU/L) 14.18±0.53a 13.06±0.55c 12.39±0.32c 11.65±0.28c 11.07±0.36c 14.04±0.46a 13.30±0.51 12.54±0.51c 11.70±0.56c 11.51±0.73c
HOMA-IR 2.33±0.16a 1.94±0.400b 1.93±0.107d 1.76±0.059d 1.64±0.073d 2.30±0.06a 2.07±0.09 1.93±0.083d 1.77±0.096d 1.65±0.076d
TG (mmol/L) 1.72±0.09a 1.61±0.11 1.46±0.116c 1.23±0.08c 1.15±0.10d 1.72±0.17a 1.62±0.18 1.47±0.125c 1.32±0.10c 1.46±0.17c,e
TC (mmol/L) 2.41±0.30a 2.33±0.19 2.21±0.32 2.05±0.30c 1.90±0.12d 2.43±0.21a 2.34±0.24 2.05±0.332b 2.00±0.40d 1.98±0.16d
图3 RYGB和SG对高尿酸血症大鼠血清尿酸、尿素氮和肌酐水平的影响
图4 RYGB和SG对高尿酸血症大鼠空腹血糖、胰岛素和HOMA-IR的影响
图5 RYGB和SG对高尿酸血症大鼠血清甘油三酯和总胆固醇水平的影响
表4 RYGB和 SG 对血清LPS、IL-6、TNF-α炎症指标和黄嘌呤氧化酶XO的影响(±s
图6 RYGB和SG对高尿酸血症大鼠血清LPS、XO、IL-6和TNF-α的影响
[1]
Gustafsson D, Unwin R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality[J]. BMC Nephrol, 2013, 14(1): 164.
[2]
张永能,程继东. 高尿酸血症及相关代谢性疾病的病理生理学研究进展[J]. 广东医学, 2012, 33(1):134-137.
[3]
Yadav D, Lee ES, Kim HM, et al. Hyperuricemia as a Potential Determinant of Metabolic Syndrome[J]. J Lifestyle Med, 2013, 3(2): 98-106.
[4]
Brito JP, Montori VM, Davis AM. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations[J]. JAMA, 2017, 317(6): 635-636.
[5]
Cowan GS, Jr., Buffington CK. Significant changes in blood pressure, glucose, and lipids with gastric bypass surgery[J]. World J Surg, 1998, 22(9): 987-992.
[6]
Golomb I, Ben David M, Glass A, et al. Long-term Metabolic Effects of Laparoscopic Sleeve Gastrectomy[J]. JAMA Surg, 2015, 150(11): 1051-1057.
[7]
Oberbach A, Neuhaus J, Inge T, et al. Bariatric surgery in severely obese adolescents improves major comorbidities including hyperuricemia[J]. Metabolism, 2014, 63(2): 242-249.
[8]
Guo Y, Jiang Q, Gui D, et al. Chinese Herbal Formulas Si-Wu-Tang and Er-Miao-San Synergistically Ameliorated Hyperuricemia and Renal Impairment in Rats Induced by Adenine and Potassium Oxonate[J]. Cell Physiol Biochem, 2015, 37(4): 1491-1502.
[9]
Bruinsma BG, Uygun K, Yarmush ML, et al. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice[J]. Nat Protoc, 2015, 10(3): 495-507.
[10]
Cibickova L, Langova K, Vaverkova H, et al. Correlation of uric acid levels and parameters of metabolic syndrome[J]. Physiol Res, 2017, 66(3): 481-487.
[11]
Chen LY, Zhu WH, Chen ZW, et al. Relationship between hyperuricemia and metabolic syndrome[J]. J Zhejiang Univ Sci B, 2007, 8(8): 593-598.
[12]
Chiou WK, Wang MH, Huang DH, et al. The Relationship between Serum Uric Acid Level and Metabolic Syndrome: Differences by Sex and Age in Taiwanese[J]. Journal of Epidemiology, 2010, 20(3): 219-224.
[13]
Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(11): R1275-1291.
[14]
Oberbach A, Neuhaus J, Schlichting N, et al. Sleeve gastrectomy reduces xanthine oxidase and uric acid in a rat model of morbid obesity[J]. Surg Obes Relat Dis, 2014, 10(4): 684-690.
[15]
Tam HK, Kelly AS, Fox CK, et al. Weight Loss Mediated Reduction in Xanthine Oxidase Activity and Uric Acid Clearance in Adolescents with Severe Obesity[J]. Child Obes, 2016, 12(4): 286-291.
[16]
Takeyama N, Shoji Y, Ohashi K, et al. Role of reactive oxygen intermediates in lipopolysaccharide-mediated hepatic injury in the rat[J]. J Surg Res, 1996, 60(1): 258-262.
[17]
Kurosaki M, Li Calzi M, Scanziani E, et al. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide[J]. Biochem J, 1995, 306 ( Pt 1)(10): 225-234.
[18]
Hoidal JR, Xu P, Huecksteadt T, et al. Transcriptional regulation of human xanthine dehydrogenase/xanthine oxidase[J]. Biochem Soc Trans, 1997, 25(3): 796-799.
[19]
Xu P, LaVallee P, Hoidal JR. Repressed expression of the human xanthine oxidoreductase gene. E-box and TATA-like elements restrict ground state transcriptional activity[J]. J Biol Chem, 2000, 275(8): 5918-5926.
[20]
Tuomi K, Logomarsino JV. Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery[J]. Metab Syndr Relat Disord, 2016, 14(6): 279-288.
[21]
Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery[J]. Surg Obes Relat Dis, 2015, 11(4): 933-939.
[22]
Facchini F, Chen YD, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration[J]. JAMA, 1991, 266(21): 3008-3011.
[23]
Nakagawa T, Cirillo P, Sato W, et al. The conundrum of hyperuricemia, metabolic syndrome, and renal disease[J]. Intern Emerg Med, 2008, 3(4): 313-318.
[24]
黄文辉. 高胰岛素抑制肾脏尿酸排泄的基础与临床研究以及氯沙坦的干预机制. [D].兰州大学, 2015.
[25]
Ferrannini E, Camastra S, Gastaldelli A, et al. beta-cell function in obesity: effects of weight loss[J]. Diabetes, 2004, 53 Suppl 3(suppl 3):S26.
[26]
Yin DP, Gao Q, Ma LL, et al. Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice[J]. Ann Surg, 2011, 254(1): 73-82.
[27]
Shao Y, Ding R, Xu B, et al. Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats[J]. Obes Surg, 2017, 27(2): 295-302.
[28]
Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives[J]. J Intern Med, 2016, 280(4): 339-349.
[29]
Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10(6): 729-734.
[30]
Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk[J]. Gut, 2011, 60(9): 1214-1223.
[31]
Guo Y, Liu CQ, Shan CX, et al. Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. [J]. Diabetes/metabolism Research & Reviews, 2016, 33(3).e2857.
[1] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[2] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[3] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[4] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[5] 江杰, 沈城, 潘永昇, 陈新风, 刘振民, 朱华, 郑兵. 尿酸结石的危险因素分析及双能量CT特征研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 361-365.
[6] 玉素江·图荪托合提, 韩琦, 麦麦提艾力·麦麦提明, 黄旭东, 王浩, 克力木·阿不都热依木, 艾克拜尔·艾力. 腹腔镜袖状胃切除或联合食管裂孔疝修补术对肥胖症合并胃食管反流病的中期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 501-506.
[7] 刘见, 杨晓波, 何均健, 等. 应用电钩三孔法腹腔镜袖状胃切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(06): 363-364.
[8] 唐诗, 薛传优, 叶兴, 张鸿举, 戴瑞. 急性病毒性肝炎患者血脂、血糖、蛋白、尿酸变化特点及其与预后的关联[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 396-399.
[9] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[10] 李兆, 李兆鹏, 宋逸, 郭栋, 陈栋, 李宇. 腹腔镜袖状胃切除术后残胃容积的测量方案及评价[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 242-247.
[11] 王超珺, 董志勇, 赵宛鄂, 胡嵩浩, 刘昭晖. 肌少症对肥胖患者袖状胃切除术后效果的影响研究[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 283-287.
[12] 孙海涛, 郝少龙, 孙武青, 韩威, 白日星. 中间入路法单孔腹腔镜袖状胃切除术:3 例报告(附视频)[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 300-304.
[13] 中国医师协会外科医师分会肥胖和代谢病外科专家工作组, 中国医师协会外科医师分会胃食管反流疾病诊疗外科专家工作组, 日本肥胖治疗学会, 韩国减重与代谢外科学会. 袖状胃切除术患者胃食管反流病诊治专家共识(2024版)[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 145-162.
[14] 郭明杰, 周春起, 余佳慧, 李世红, 朱红梅, 刘雁军, 杨华武. 肥胖与胃食管反流病的关系及减重术后反流治疗研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 184-192.
[15] 邢颖, 闫文貌. 单孔腹腔镜袖状胃切除术发展现状[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 133-137.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?