切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2017, Vol. 03 ›› Issue (04) : 198 -207. doi: 10.3877/cma.j.issn.2095-9605.2017.04.005

所属专题: 文献

专题论著

Roux-en-Y胃旁路手术和袖状胃切除术对高尿酸血症大鼠代谢的影响及机制研究
卢存龙1, 李宇1, 李龙1, 石拓1, 朱厚鑫1, 周岩冰1,()   
  1. 1. 266000 青岛,青岛大学附属医院胃肠外科
  • 收稿日期:2017-10-22 出版日期:2017-11-30
  • 通信作者: 周岩冰
  • 基金资助:
    山东省自然科学基金资助项目(ZR2012HM046)

Effects and mechanisms of Roux-en-Y gastric bypass and sleeve gastrectomy on metabolism in hyperuricemic rat model

Cunlong Lu1, Yu Li1, Long Li1, Tuo Shi1, Houxin Zhu1, Yanbing Zhou1,()   

  1. 1. Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Shandong 266000, China
  • Received:2017-10-22 Published:2017-11-30
  • Corresponding author: Yanbing Zhou
  • About author:
    Corresponding author: Zhou Yanbing, Email:
引用本文:

卢存龙, 李宇, 李龙, 石拓, 朱厚鑫, 周岩冰. Roux-en-Y胃旁路手术和袖状胃切除术对高尿酸血症大鼠代谢的影响及机制研究[J]. 中华肥胖与代谢病电子杂志, 2017, 03(04): 198-207.

Cunlong Lu, Yu Li, Long Li, Tuo Shi, Houxin Zhu, Yanbing Zhou. Effects and mechanisms of Roux-en-Y gastric bypass and sleeve gastrectomy on metabolism in hyperuricemic rat model[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2017, 03(04): 198-207.

目的

探究两种主要的减重手术Roux-en-Y胃旁路手术(RYGB)和袖状胃切除术(SG)对高尿酸血症(HUA)大鼠血尿酸(SUA)、糖代谢、脂代谢的影响,并通过观察术后炎症性指标,包括脂多糖(LPS)、白介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)和黄嘌呤氧化酶(XO)水平的变化,来探究其相关的机制。

方法

Wistar大鼠随机分为模型组(Model)和对照组(Control),模型组给予含酵母膏的标准饲料饮食和腺嘌呤、氧嗪酸钾灌胃处理建立高尿酸血症大鼠模型,对照组自由进食正常饲料,模型组经上述处理三周后随机分为三个亚组:RYGB组、SG组和假手术组(Sham),随后进行不同手术处理。术前与术后2、4、6、8周分别对大鼠的体重、食物摄入量进行记录。术前与术后对血清尿酸、肌酐(Cr)和尿素氮(BUN)、空腹血糖(FPG),空腹胰岛素(FINS)、胰岛素抵抗指数(HOMA-IR)、血清甘油三酯(TG)和总胆固醇(TC)等生化指标和LPS、IL-6、TNF-α等炎症指标和XO浓度进行检测。

结果

术前,与对照组相比,模型组大鼠血尿酸、血尿素氮、肌酐和空腹血糖、血脂等生化指标及LPS、IL-6和TNF-α等炎性指标水平显著增高(P<0.001)。术后RYGB组和SG组较Sham组体重、食物摄入量减少,SUA、BUN和Cr水平,FPG、FINS、HOMA-IR、血清TG和TC水平显著降低(P<0.01)。与Sham组相比,术后RYGB和SG组血清LPS、IL-6、TNF-α水平和XO浓度显著降低(P<0.01)。

结论

胃旁路手术和袖状胃切除术能够降低高尿酸血症大鼠血尿酸水平,同时改善高尿酸血症导致的血糖、血脂代谢紊乱,其机制可能与减重手术减少体脂量、缓解炎症反应和胰岛素抵抗、调控黄嘌呤氧化酶的表达有关。

Objective

To investigate the effects of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) on metabolism of serum uric acid, blood glucose and lipid profiles in hyperuricemic rat model, and by observing the alteration of serum LPS, IL-6, TNF-α and XO to explore the related mechanism.

Methods

Forty Wistar rats were randomly divided into hyperuricemic model group and control group. The model group were administered high purine food and orally intragastrical adenine and potassium oxonate to establish the hyperuricemic rat model while the control group was fed on standard food. Three weeks later, the model group was assigned to three subgroups: RYGB, SG, Sham. Then different operational procedures were performed. Body weight and amounts of food intake were recorded before the surgery and 2, 4, 6, 8 weeks following surgical operations. Pre- and postsurgical serum uric acid, BUN and creatinine, fasting plasm glucose, fasting insulin concentration, HOMA-IR, triglyceride and total cholesterol were assessed. Serum LPS, IL-6, TNF-α level and concentration of XO were measured.

Results

Preoperatively, compared with control group, serum uric acid, urea nitrogen, creatinine level of model group significantly increased, indicating that the established hyperuricemic rat model by high purine food intake and oral intragastrical administration of adenine and potassium oxonate was successful. The biochemical index of fasting blood glucose and lipid profiles and inflammatrory markers LPS, IL-6, TNF-α in model groups was much higher than that in control group (P<0.001). After surgery, compared with Sham group, body weight, amount of food intake, serum uric acid serum urea nitrogen and creatinine levels and fasting plasm glucose, serum insulin, insulin resistance index(HOMA-IR score), serum triglyceride and total cholesterol levels were significantly decreased (P<0.01). RYGB and SG surgery lowered serum LPS, IL-6, TNF-α and XO concentration compared with Sham group (P<0.01).

Conclusions

RYGB and SG surgery significantly reduced serum uric acid level and improved the imbalance of metabolism of glucose and lipid profiles of hyperuricemic rat. Mechanically, RYGB and SG surgery might reduce serum uric acid by reducing fat mass, relieving inflammation and insulin resistance as well as regulating the expression of XO.

表1 RYGB和 SG术后各组大鼠体重的变化(±s, g)
表2 RYGB和SG术后各组大鼠食物摄入量的变化(±s, g/week)
图1 RYGB和 SG 术后各组大鼠体重的变化
图2 RYGB和 SG 术后各组大鼠食物摄入量的变化
表3 RYGB和 SG术后各组大鼠血清生化指标的变化(±s
? Control Sham
? 0 W(n=10) 2 W(n=10) 4 W(n=10) 6 W(n=10) 8 W(n=10) 0 W(n=10) 2 W(n=10) 4 W(n=10) 6 W(n=10) 8 W(n=10)
SUA (umol/L) 145.6±6.37 141.9±8.51 149.35±6.12 149.55±5.98 150.1±7.0 199.5±12.8a 196.5±11.6 182.74±10.67 179.31±10.9 175.46±13.3
BUN (mmol/L) 6.19±0.67 6.92±1.26 6.31±0.54 6.76±0.65 6.65±0.78 13.68±1.47a 13.92±1.08 13.35±1.80 12.03±1.60 10.75±1.88
CR (umol/L) 64.81±8.52 67.7±9.51 69.33±5.83 70.48±5.48 70.58±5.32 109.65±10.6a 109.51±14.6 101.32±13.86 96.20±13.27 87.27±10.87
FPG (mmol/L) 5.15±0.74 5.14±0.77 5.62±0.31 5.56±0.51 5.53±0.61 7.17±0.64a 7.40±0.70 7.36±0.67 7.12±0.60 7.16±0.81
FINS (mIU/L) 10.38±0.62 10.48±0.56 10.41±0.63 10.03±0.42 10.28±0.54 14.18±0.65a 13.84±0.62 13.32±0.45 12.80±0.30 12.43±0.44
HOMA-IR 1.52±0.11 1.53±0.096 1.56±0.103 1.47±0.096 1.50±0.076 2.23±0.16a 2.21±0.173 2.12±0.109 2.07±0.090 2.02±0.148
TG (mmol/L) 0.89±0.16 1.03±0.17 1.09±0.17 1.10±0.22 1.19±0.24 1.67±0.11a 1.64±0.25 1.73±0.198 1.87±0.23 1.87±0.23
TC (mmol/L) 1.57±0.26 1.60±0.29 1.61±0.16 1.60±0.21 1.71±0.18 2.34±0.27a 2.35±0.28 2.41±0.36 2.50±0.29 2.65±0.15
? RYGB SG
? 0 W(n=10) 2 W(n=8) 4 W(n=8) 6 W(n=8) 8 W(n=8) 0 W(n=10) 2 W(n=10) 4 W(n=10) 6 W(n=10) 8 W(n=10)
SUA (umol/L) 195.1±11.6a 187.05±10.23 178.15±10.70 168.5±6.36c 159.33±8.54c 195.0±16.7a 187.1±14.16 176.65±11.58 166.4±8.30c 157.74±6.16c
BUN (mmol/L) 13.81±1.45a 12.81±1.06 11.17±1.11b 10.14±1.00b 8.73±0.92c 13.35±0.88a 12.64±1.71b 10.74±2.87c 9.14±2.50d 8.33±1.78c
CR (umol/L) 106.0±11.72a 97.95±12.69 87.03±10.01c 77.91±9.77c 70.92±7.06c 111.9±14.20a 102.67±12.4 93.31±7.68c 81.51±7.28c 76.98±7.41c
FPG (mmol/L) 7.14±1.11a 6.78±0.85 6.36±0.75b 6.10±0.67c 6.09±0.63c 7.46±0.65a 6.90±0.50 6.43±0.63b 6.23±0.70c 6.21±0.51c
FINS (mIU/L) 14.18±0.53a 13.06±0.55c 12.39±0.32c 11.65±0.28c 11.07±0.36c 14.04±0.46a 13.30±0.51 12.54±0.51c 11.70±0.56c 11.51±0.73c
HOMA-IR 2.33±0.16a 1.94±0.400b 1.93±0.107d 1.76±0.059d 1.64±0.073d 2.30±0.06a 2.07±0.09 1.93±0.083d 1.77±0.096d 1.65±0.076d
TG (mmol/L) 1.72±0.09a 1.61±0.11 1.46±0.116c 1.23±0.08c 1.15±0.10d 1.72±0.17a 1.62±0.18 1.47±0.125c 1.32±0.10c 1.46±0.17c,e
TC (mmol/L) 2.41±0.30a 2.33±0.19 2.21±0.32 2.05±0.30c 1.90±0.12d 2.43±0.21a 2.34±0.24 2.05±0.332b 2.00±0.40d 1.98±0.16d
图3 RYGB和SG对高尿酸血症大鼠血清尿酸、尿素氮和肌酐水平的影响
图4 RYGB和SG对高尿酸血症大鼠空腹血糖、胰岛素和HOMA-IR的影响
图5 RYGB和SG对高尿酸血症大鼠血清甘油三酯和总胆固醇水平的影响
表4 RYGB和 SG 对血清LPS、IL-6、TNF-α炎症指标和黄嘌呤氧化酶XO的影响(±s
图6 RYGB和SG对高尿酸血症大鼠血清LPS、XO、IL-6和TNF-α的影响
[1]
Gustafsson D, Unwin R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality[J]. BMC Nephrol, 2013, 14(1): 164.
[2]
张永能,程继东. 高尿酸血症及相关代谢性疾病的病理生理学研究进展[J]. 广东医学, 2012, 33(1):134-137.
[3]
Yadav D, Lee ES, Kim HM, et al. Hyperuricemia as a Potential Determinant of Metabolic Syndrome[J]. J Lifestyle Med, 2013, 3(2): 98-106.
[4]
Brito JP, Montori VM, Davis AM. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations[J]. JAMA, 2017, 317(6): 635-636.
[5]
Cowan GS, Jr., Buffington CK. Significant changes in blood pressure, glucose, and lipids with gastric bypass surgery[J]. World J Surg, 1998, 22(9): 987-992.
[6]
Golomb I, Ben David M, Glass A, et al. Long-term Metabolic Effects of Laparoscopic Sleeve Gastrectomy[J]. JAMA Surg, 2015, 150(11): 1051-1057.
[7]
Oberbach A, Neuhaus J, Inge T, et al. Bariatric surgery in severely obese adolescents improves major comorbidities including hyperuricemia[J]. Metabolism, 2014, 63(2): 242-249.
[8]
Guo Y, Jiang Q, Gui D, et al. Chinese Herbal Formulas Si-Wu-Tang and Er-Miao-San Synergistically Ameliorated Hyperuricemia and Renal Impairment in Rats Induced by Adenine and Potassium Oxonate[J]. Cell Physiol Biochem, 2015, 37(4): 1491-1502.
[9]
Bruinsma BG, Uygun K, Yarmush ML, et al. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice[J]. Nat Protoc, 2015, 10(3): 495-507.
[10]
Cibickova L, Langova K, Vaverkova H, et al. Correlation of uric acid levels and parameters of metabolic syndrome[J]. Physiol Res, 2017, 66(3): 481-487.
[11]
Chen LY, Zhu WH, Chen ZW, et al. Relationship between hyperuricemia and metabolic syndrome[J]. J Zhejiang Univ Sci B, 2007, 8(8): 593-598.
[12]
Chiou WK, Wang MH, Huang DH, et al. The Relationship between Serum Uric Acid Level and Metabolic Syndrome: Differences by Sex and Age in Taiwanese[J]. Journal of Epidemiology, 2010, 20(3): 219-224.
[13]
Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(11): R1275-1291.
[14]
Oberbach A, Neuhaus J, Schlichting N, et al. Sleeve gastrectomy reduces xanthine oxidase and uric acid in a rat model of morbid obesity[J]. Surg Obes Relat Dis, 2014, 10(4): 684-690.
[15]
Tam HK, Kelly AS, Fox CK, et al. Weight Loss Mediated Reduction in Xanthine Oxidase Activity and Uric Acid Clearance in Adolescents with Severe Obesity[J]. Child Obes, 2016, 12(4): 286-291.
[16]
Takeyama N, Shoji Y, Ohashi K, et al. Role of reactive oxygen intermediates in lipopolysaccharide-mediated hepatic injury in the rat[J]. J Surg Res, 1996, 60(1): 258-262.
[17]
Kurosaki M, Li Calzi M, Scanziani E, et al. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide[J]. Biochem J, 1995, 306 ( Pt 1)(10): 225-234.
[18]
Hoidal JR, Xu P, Huecksteadt T, et al. Transcriptional regulation of human xanthine dehydrogenase/xanthine oxidase[J]. Biochem Soc Trans, 1997, 25(3): 796-799.
[19]
Xu P, LaVallee P, Hoidal JR. Repressed expression of the human xanthine oxidoreductase gene. E-box and TATA-like elements restrict ground state transcriptional activity[J]. J Biol Chem, 2000, 275(8): 5918-5926.
[20]
Tuomi K, Logomarsino JV. Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery[J]. Metab Syndr Relat Disord, 2016, 14(6): 279-288.
[21]
Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery[J]. Surg Obes Relat Dis, 2015, 11(4): 933-939.
[22]
Facchini F, Chen YD, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration[J]. JAMA, 1991, 266(21): 3008-3011.
[23]
Nakagawa T, Cirillo P, Sato W, et al. The conundrum of hyperuricemia, metabolic syndrome, and renal disease[J]. Intern Emerg Med, 2008, 3(4): 313-318.
[24]
黄文辉. 高胰岛素抑制肾脏尿酸排泄的基础与临床研究以及氯沙坦的干预机制. [D].兰州大学, 2015.
[25]
Ferrannini E, Camastra S, Gastaldelli A, et al. beta-cell function in obesity: effects of weight loss[J]. Diabetes, 2004, 53 Suppl 3(suppl 3):S26.
[26]
Yin DP, Gao Q, Ma LL, et al. Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice[J]. Ann Surg, 2011, 254(1): 73-82.
[27]
Shao Y, Ding R, Xu B, et al. Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats[J]. Obes Surg, 2017, 27(2): 295-302.
[28]
Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives[J]. J Intern Med, 2016, 280(4): 339-349.
[29]
Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10(6): 729-734.
[30]
Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk[J]. Gut, 2011, 60(9): 1214-1223.
[31]
Guo Y, Liu CQ, Shan CX, et al. Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. [J]. Diabetes/metabolism Research & Reviews, 2016, 33(3).e2857.
[1] 李晓晖, 上官昌盛, 向英, 裴芝皆, 车俊志, 谢飞. 3D腹腔镜袖状胃切除术后机体能量代谢与多囊卵巢综合征患者性激素水平关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 538-541.
[2] 牛朝, 李波, 张万福, 靳文帝, 王春晓, 李晓刚. 腹腔镜袖状胃切除联合胆囊切除治疗肥胖合并胆囊结石安全性和疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 635-639.
[3] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[4] 王丽媛, 张瑞芳, 王向托, 王雅霄. 老年高尿酸血症患者血清白细胞介素-23、尿酸、单核细胞趋化蛋白-1与肾功能损伤的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 145-149.
[5] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[6] 王丽芳, 宁武, 丁艳, 张彦霞, 马豆豆, 卢哲敏, 韩芃, 李超然, 王宽婷. 北京市石景山区中学生的血尿酸与血清25(OH)D3水平的相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(08): 865-869.
[7] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
[8] 李赞林, 马建惠, 王志. 腹腔镜袖状胃切除术对胃食管反流病疗效的系统评价与分析[J]. 中华胃食管反流病电子杂志, 2023, 10(01): 22-30.
[9] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[10] 佟鑫, 何毅, 周莹, 付强. 腹腔镜袖状胃切除术治疗肥胖合并风湿性心脏病患者麻醉管理一例[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 143-145.
[11] 戚晓阳, 杨平, 杜忠秋, 邱旭升, 汤黎明, 陈一心. 袖状胃切除术对肥胖合并2型糖尿病大鼠模型骨密度的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 102-108.
[12] 毛尔东, 杨金伟, 吴边, 尚云. 腹腔镜袖状胃切除术后胃漏的研究进展及诊治体会[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 55-61.
[13] 黄建朋, 杨骏波, 朱胜彬, 宗华. 3例HIV感染的肥胖患者袖状胃手术的安全性与有效性观察[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 68-71.
[14] 伍振鹏, 乔钰涵, 向林, 江云颂, 彭居正, 吴丽娜, 程吕佳, 关炳生, 庄子康, 杨景哥. 腹腔镜袖状胃切除术中胃窦切缘与幽门的距离对术后胃食管反流病及减重效果的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 4-11.
[15] 罗世锦, 董世梁, 王存川, 董志勇. 袖状胃切除术联合十二指肠空肠旁路术的研究进展[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 271-276.
阅读次数
全文


摘要