[1] |
Clemente MG, Mandato C, Poeta M, et al. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions[J]. World J Gastroenterol, 2016, 22(36): 8078-8093.
|
[2] |
Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease[J]. Ann Transl Med, 2017, 5(13): 270.
|
[3] |
Lebeaupin C, Vallee D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 927-947.
|
[4] |
Koo JH, Lee HJ, Kim W, et al. Endoplasmic Reticulum Stress in Hepatic Stellate Cells Promotes Liver Fibrosis via PERK-Mediated Degradation of HNRNPA1 and Up-regulation of SMAD2[J]. Gastroenterology, 2016, 150(1): 181-193 e188.
|
[5] |
Zhang XQ, Xu CF, Yu CH, et al. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(7): 1768-1776.
|
[6] |
Sun Z, Brodsky JL. Protein quality control in the secretory pathway[J]. J Cell Biol, 2019, 218(10): 3171-3187.
|
[7] |
Preissler S, Ron D. Early Events in the Endoplasmic Reticulum Unfolded Protein Response[J]. Cold Spring Harb Perspect Biol, 2019, 11(4).
|
[8] |
Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response[J]. Nat Cell Biol, 2000, 2(6): 326-332.
|
[9] |
Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis[J]. Semin Liver Dis, 2019, 39(2): 235-248.
|
[10] |
Huang J, Wan L, Lu H, et al. High expression of active ATF6 aggravates endoplasmic reticulum stressinduced vascular endothelial cell apoptosis through the mitochondrial apoptotic pathway[J]. Mol Med Rep, 2018, 17(5): 6483-6489.
|
[11] |
Rozpedek W, Pytel D, Mucha B, et al. The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress[J]. Curr Mol Med, 2016, 16(6): 533-544.
|
[12] |
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways[J]. Trends Biochem Sci, 2018, 43(8): 593-605.
|
[13] |
Yang Y, Dong F, Liu X, et al. Crosstalk of oxidative damage, apoptosis, and autophagy under endoplasmic reticulum (ER) stress involved in thifluzamide-induced liver damage in zebrafish (Danio rerio)[J]. Environ Pollut, 2018, 243(Pt B): 1904-1911.
|
[14] |
任路平, 于贤, 宋光耀, 等. 高果糖、高脂喂养致小鼠肝脏内质网应激的时程变化[J].中国老年学杂志, 2015, 35(23): 6692-6694.
|
[15] |
Tian S, Li B, Lei P, et al. Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways[J]. Mol Nutr Food Res, 2018, 62(6): e1700737.
|
[16] |
Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16314-16319.
|
[17] |
Oyadomari S, Harding HP, Zhang Y, et al. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice[J]. Cell Metab, 2008, 7(6): 520-532.
|
[18] |
Wang C, Huang Z, Du Y, et al. ATF4 regulates lipid metabolism and thermogenesis[J]. Cell Res, 2010, 20(2): 174-184.
|
[19] |
Xiao G, Zhang T, Yu S, et al. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice[J]. J Biol Chem, 2013, 288(35): 25350-25361.
|
[20] |
Olivares S, Henkel AS. The role of X-box binding protein 1 in the hepatic response to refeeding in mice[J]. J Lipid Res, 2019, 60(2): 353-359.
|
[21] |
Flister KFT, Pinto BAS, Franca LM, et al. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice[J]. J Nutr Biochem, 2018, 62: 155-166.
|
[22] |
郑璐, 韩冰, 汤雷, 等. 内质网应激诱导的自噬对肝细胞凋亡的影响[J]. 中国病理生理杂志, 2019, 35(2): 332-339.
|
[23] |
Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF-kappaB activation in the pathogenesis of nonalcoholic steatohepatitis[J]. Mol Biol Cell, 2015, 26(12): 2190-2204.
|
[24] |
Hu P, Han Z, Couvillon AD, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression[J]. Mol Cell Biol, 2006, 26(8): 3071-3084.
|
[25] |
Duvigneau JC, Luis A, Gorman AM, et al. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases[J]. Cytokine, 2019, 124: 154577.
|
[26] |
Zuo L, Zhu Y, Hu L, et al. PI3-kinase/Akt pathway-regulated membrane transportation of acid-sensing ion channel 1a/Calcium ion influx/endoplasmic reticulum stress activation on PDGF-induced HSC Activation[J]. J Cell Mol Med, 2019, 23(6): 3940-3950.
|
[27] |
Heindryckx F, Binet F, Ponticos M, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1alpha-mediated degradation of miR-150 and XBP-1 splicing[J]. EMBO Mol Med, 2016, 8(7): 729-744.
|
[28] |
汪应红, 王欢, 左龙泉, 等. 自噬在内质网应激诱导的肝星状细胞凋亡中的作用研究[J]. 安徽医科大学学报, 2016, 51(8): 1115-1119.
|
[29] |
Huang Y, Li X, Wang Y, et al. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways[J]. Mol Cell Biochem, 2014, 394(1-2): 1-12.
|
[30] |
Zheng J, Peng C, Ai Y, et al. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes[J]. Nutrients, 2016, 8(1).
|
[31] |
Jang MK, Nam JS, Kim JH, et al. Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress[J]. J Ethnopharmacol, 2016, 185: 96-104.
|
[32] |
Malhi H. MICRORNAs IN ER STRESS: DIVERGENT ROLES IN CELL FATE DECISIONS[J]. Curr Pathobiol Rep, 2014, 2(3): 117-122.
|
[33] |
Chen Z, Liu Y, Yang L, et al. MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway[J]. Immunol Lett, 2020, 222: 40-48.
|
[34] |
Pant K, Venugopal SK. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease[J]. Clin Res Hepatol Gastroenterol, 2017, 41(4): 370-377.
|
[35] |
Kagawa T, Shirai Y, Oda S, et al. Identification of Specific MicroRNA Biomarkers in Early Stages of Hepatocellular Injury, Cholestasis, and Steatosis in Rats[J]. Toxicol Sci, 2018, 166(1): 228-239.
|
[36] |
Liu CH, Ampuero J, Gil-Gomez A, et al. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Hepatol, 2018, 69(6): 1335-1348.
|
[37] |
Liu J, Xiao Y, Wu X, et al. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis[J]. BMC Genomics, 2018, 19(1): 188.
|