[1] |
Gustafsson D, Unwin R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality[J]. BMC Nephrol, 2013, 14(1): 164.
|
[2] |
张永能,程继东. 高尿酸血症及相关代谢性疾病的病理生理学研究进展[J]. 广东医学, 2012, 33(1):134-137.
|
[3] |
Yadav D, Lee ES, Kim HM, et al. Hyperuricemia as a Potential Determinant of Metabolic Syndrome[J]. J Lifestyle Med, 2013, 3(2): 98-106.
|
[4] |
Brito JP, Montori VM, Davis AM. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations[J]. JAMA, 2017, 317(6): 635-636.
|
[5] |
Cowan GS, Jr., Buffington CK. Significant changes in blood pressure, glucose, and lipids with gastric bypass surgery[J]. World J Surg, 1998, 22(9): 987-992.
|
[6] |
Golomb I, Ben David M, Glass A, et al. Long-term Metabolic Effects of Laparoscopic Sleeve Gastrectomy[J]. JAMA Surg, 2015, 150(11): 1051-1057.
|
[7] |
Oberbach A, Neuhaus J, Inge T, et al. Bariatric surgery in severely obese adolescents improves major comorbidities including hyperuricemia[J]. Metabolism, 2014, 63(2): 242-249.
|
[8] |
Guo Y, Jiang Q, Gui D, et al. Chinese Herbal Formulas Si-Wu-Tang and Er-Miao-San Synergistically Ameliorated Hyperuricemia and Renal Impairment in Rats Induced by Adenine and Potassium Oxonate[J]. Cell Physiol Biochem, 2015, 37(4): 1491-1502.
|
[9] |
Bruinsma BG, Uygun K, Yarmush ML, et al. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice[J]. Nat Protoc, 2015, 10(3): 495-507.
|
[10] |
Cibickova L, Langova K, Vaverkova H, et al. Correlation of uric acid levels and parameters of metabolic syndrome[J]. Physiol Res, 2017, 66(3): 481-487.
|
[11] |
Chen LY, Zhu WH, Chen ZW, et al. Relationship between hyperuricemia and metabolic syndrome[J]. J Zhejiang Univ Sci B, 2007, 8(8): 593-598.
|
[12] |
Chiou WK, Wang MH, Huang DH, et al. The Relationship between Serum Uric Acid Level and Metabolic Syndrome: Differences by Sex and Age in Taiwanese[J]. Journal of Epidemiology, 2010, 20(3): 219-224.
|
[13] |
Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(11): R1275-1291.
|
[14] |
Oberbach A, Neuhaus J, Schlichting N, et al. Sleeve gastrectomy reduces xanthine oxidase and uric acid in a rat model of morbid obesity[J]. Surg Obes Relat Dis, 2014, 10(4): 684-690.
|
[15] |
Tam HK, Kelly AS, Fox CK, et al. Weight Loss Mediated Reduction in Xanthine Oxidase Activity and Uric Acid Clearance in Adolescents with Severe Obesity[J]. Child Obes, 2016, 12(4): 286-291.
|
[16] |
Takeyama N, Shoji Y, Ohashi K, et al. Role of reactive oxygen intermediates in lipopolysaccharide-mediated hepatic injury in the rat[J]. J Surg Res, 1996, 60(1): 258-262.
|
[17] |
Kurosaki M, Li Calzi M, Scanziani E, et al. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide[J]. Biochem J, 1995, 306 ( Pt 1)(10): 225-234.
|
[18] |
Hoidal JR, Xu P, Huecksteadt T, et al. Transcriptional regulation of human xanthine dehydrogenase/xanthine oxidase[J]. Biochem Soc Trans, 1997, 25(3): 796-799.
|
[19] |
Xu P, LaVallee P, Hoidal JR. Repressed expression of the human xanthine oxidoreductase gene. E-box and TATA-like elements restrict ground state transcriptional activity[J]. J Biol Chem, 2000, 275(8): 5918-5926.
|
[20] |
Tuomi K, Logomarsino JV. Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery[J]. Metab Syndr Relat Disord, 2016, 14(6): 279-288.
|
[21] |
Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery[J]. Surg Obes Relat Dis, 2015, 11(4): 933-939.
|
[22] |
Facchini F, Chen YD, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration[J]. JAMA, 1991, 266(21): 3008-3011.
|
[23] |
Nakagawa T, Cirillo P, Sato W, et al. The conundrum of hyperuricemia, metabolic syndrome, and renal disease[J]. Intern Emerg Med, 2008, 3(4): 313-318.
|
[24] |
黄文辉. 高胰岛素抑制肾脏尿酸排泄的基础与临床研究以及氯沙坦的干预机制. [D].兰州大学, 2015.
|
[25] |
Ferrannini E, Camastra S, Gastaldelli A, et al. beta-cell function in obesity: effects of weight loss[J]. Diabetes, 2004, 53 Suppl 3(suppl 3):S26.
|
[26] |
Yin DP, Gao Q, Ma LL, et al. Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice[J]. Ann Surg, 2011, 254(1): 73-82.
|
[27] |
Shao Y, Ding R, Xu B, et al. Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats[J]. Obes Surg, 2017, 27(2): 295-302.
|
[28] |
Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives[J]. J Intern Med, 2016, 280(4): 339-349.
|
[29] |
Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10(6): 729-734.
|
[30] |
Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk[J]. Gut, 2011, 60(9): 1214-1223.
|
[31] |
Guo Y, Liu CQ, Shan CX, et al. Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. [J]. Diabetes/metabolism Research & Reviews, 2016, 33(3).e2857.
|