[1] |
Ferrell JM, Chiang JY. Circadian rhythms in liver metabolism and disease[J]. Acta Pharm Sin B, 2015, 5(2):113-122.
|
[2] |
Shimba S, Ogawa T, Hitosugi S, et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation[J]. PLoS One, 2011, 6(9):e25231.
|
[3] |
Guillaumond F, Dardente H, Giguère V, et al. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors[J]. J Biol Rhythms, 2005, 20(5):391-403.
|
[4] |
Zhou B, Zhang Y, Zhang F, et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1[J]. Hepatology, 2014, 59(6):2196-2206.
|
[5] |
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation[J]. Cell, 2008, 134(2):317-328.
|
[6] |
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control[J]. Cell, 2008, 134(2):329-340.
|
[7] |
Anafi RC, Lee Y, Sato TK, et al. Machine learning helps identify CHRONO as a circadian clock component[J]. PLoS Biol, 2014, 12(4):e1001840.
|
[8] |
Bhargava A, Herzel H, Ananthasubramaniam B. Mining for novel candidate clock genes in the circadian regulatory network[J]. BMC Syst Biol, 2015(9):78.
|
[9] |
Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock[J]. Handb Exp Pharmacol, 2013(217):3-27.
|
[10] |
Bruce KD, Szczepankiewicz D, Sihota KK, et al. Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH[J]. Biochim Biophys Acta, 2016, 1861(7):584-593.
|
[11] |
Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus[J]. Genes Cells, 2001, 6(3):269-278.
|
[12] |
Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice[J]. Cell Metab, 2007, 6(5):414-421.
|
[13] |
Iwamoto A, Kawai M, Furuse M, et al. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice[J]. Chronobiol Int, 2014, 31(2):189-198.
|
[14] |
Yang X, Zhang YK, Esterly N, et al. Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock[J]. J Biochem, 2009, 145(5):609-623.
|
[15] |
Gómez-Abellán P, Madrid JA, Luján JA, et al. Sexual dimorphism in clock genes expression in human adipose tissue[J]. Obes Surg, 2012, 22(1):105-112.
|
[16] |
Wang D, Chen S, Liu M, et al. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver[J]. Chronobiol Int, 2015, 32(5):615-626.
|
[17] |
Kalsbeek A, Yi CX, La Fleur SE, et al. The hypothalamic clock and its control of glucose homeostasis[J]. Trends Endocrinol Metab, 2010, 21(7):402-410.
|
[18] |
Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people[J]. Occup Environ Med, 2001, 58(11):747-752.
|
[19] |
la Fleur SE, Kalsbeek A, Wortel J, et al. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus[J]. Diabetes, 2001, 50(6):1237-1243.
|
[20] |
Yang SC, Tseng HL, Shieh KR. Circadian-clock system in mouse liver affected by insulin resistance[J]. Chronobiol Int, 2013, 30(6):796-810.
|
[21] |
Rudic RD, McNamara P, Curtis AM, et al. Two essential components of the circadian clock, are involved in glucose homeostasis[J]. PLoS Biol, 2004, 2(11):e377.
|
[22] |
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A, 2008, 105(39):15172-15177.
|
[23] |
Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B[J]. Cell Metab, 2007, 6(4):307-319.
|
[24] |
Saini C, Petrenko V, Pulimeno P, et al. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells[J]. Diabetes Obes Metab, 2016, 18(4):355-365.
|
[25] |
Rakshit K, Hsu TW, Matveyenko AV. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice[J]. Diabetologia, 2016, 59(4):734-743.
|
[26] |
Lee J, Moulik M, Fang Z, et al. Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice[J]. Mol Cell Biol, 2013, 33(11):2327-2338.
|
[27] |
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes[J]. Diabetes Care, 2009, 32(Suppl 2):S157-S163.
|
[28] |
Liu J, Zhou B, Yan M, et al. CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice[J]. Endocrinology, 2016,157(6):2259-2269.
|
[29] |
Dyar KA, Ciciliot S, Wright LE, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock[J]. Mol Metab, 2014, 3(1):29-41.
|
[30] |
Liu Y, Chewchuk S, Lavigne C, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment[J]. Am J Physiol Endocrinol Metab, 2009, 297(3):E657-E664.
|
[31] |
Bouzakri K, Plomgaard P, Berney T, et al. Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle[J]. Diabetes, 2011, 60(4):1111-1121.
|
[32] |
Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J]. Nat Med, 2011, 17(11):1481-1489.
|
[33] |
Perrin L, Loizides-Mangold U, Skarupelova S, et al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion[J]. Mol Metab, 2015, 4(11):834-845.
|