切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 104 -110. doi: 10.3877/cma.j.issn.2095-9605.2025.02.004

论著

基于生物信息学探讨高脂饮食诱导肥胖与脂质代谢基因表达的转录组研究
任重1, 罗濛源2, 闫泽晖3,4,()   
  1. 1130000 长春,长春市传染病医院骨科普外科
    2610106 成都,成都大学药学院
    3265713 烟台,烟台南山学院健康学院
    4110122 沈阳,中国医科大学共卫生学院儿少卫生与妇幼保健学教研室
  • 收稿日期:2024-11-28 出版日期:2025-05-30
  • 通信作者: 闫泽晖

The Translational Genomics Study on the Gene Expression of Lipid Metabolism Induced by High-Fat Diet in Obesity Based on Bioinformatics

Zhong Ren1, Mengyuan Luo2, Zehui Yan3,4,*()   

  1. 1Changchun Infectious Disease Hospital, Orthopedics & General Surgery, Changchun 130000, China
    2College of Pharmacy, Chengdu University, Chengdu 610100
    3Health of College, Yantai Nanshan University, Yantai 265713
    4School of Public Health, China Medical University, Shenyang, 110122, China
  • Received:2024-11-28 Published:2025-05-30
  • Corresponding author: Zehui Yan
引用本文:

任重, 罗濛源, 闫泽晖. 基于生物信息学探讨高脂饮食诱导肥胖与脂质代谢基因表达的转录组研究[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 104-110.

Zhong Ren, Mengyuan Luo, Zehui Yan. The Translational Genomics Study on the Gene Expression of Lipid Metabolism Induced by High-Fat Diet in Obesity Based on Bioinformatics[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2025, 11(02): 104-110.

目的

运用生物信息学方法深入探讨由高脂饮食引发小鼠肥胖的生理代谢变化,并通过系统分析相关基因表达的差异,揭示潜在的生物交互机制。

方法

通过GEO基因数据库进行数据检索,最终选取芯片数据集GSE136821作为分析对象。使用Bioconductor中的多个R包(如org.Mm.eg.db、Limma、clusterProfiler)对小鼠肝脏内的基因表达数据进行了差异表达基因分析(DEGs),并对这些基因进行GO功能注释及KEGG通路富集分析。本研究选取前200个DEGs,通过STRING在线数据库构建蛋白质互作网络(PPI),并利用Cytoscape筛选互作网络中的较高度值的Hub基因。

结果

共筛选出1 169个DEGs,高脂组内上调基因755个,下调基因414个。GO富集分析发现DEGs参与脂质代谢、脂肪酸代谢、炎症反应调节等生物过程,并表现出NAD(P)+核苷酶活性、脂肪酶活性、脂质转运体活性等多种分子功能。进一步的KEGG通路分析揭示,差异表达基因在多个关键生物学通路中有显著富集,尤其是在PI3K-Akt信号通路、PPAR信号通路以及胆固醇代谢相关通路等。PPI网络分析进一步揭示,PPARγ、Src和Manf为网络中的关键调控节点,提示其在高脂饮食诱导肥胖及脂质代谢异常中发挥重要作用。

结论

高脂饮食显著改变小鼠肝脏中与脂质代谢及炎症调控相关的基因表达,PPARγ、Src和Manf等关键基因通过相互作用构成了复杂的调控网络。

Objective

This study aimed to investigate the physiological and metabolic changes induced by a high-fat diet in mice using bioinformatics methods, and to reveal the underlying molecular interaction mechanisms through systematic analysis of differential gene expression.

Methods

Gene expression data were retrieved from the GEO database, and the chip dataset GSE136821 was selected for analysis. Differentially expressed genes (DEGs) in mouse liver tissue were identified using several Bioconductor R packages (such as org.Mm.eg.db, Limma, and clusterProfiler). GO functional annotation and KEGG pathway enrichment analyses were performed on these DEGs. The top 200 DEGs were further used to construct a protein–protein interaction (PPI) network via the STRING online database, and high-degree hub genes were subsequently identified using Cytoscape.

Results

A total of 1 169 DEGs were identified, with 755 genes upregulated and 414 genes downregulated in the high-fat diet group. GO enrichment analysis revealed that these DEGs are involved in biological processes such as lipid metabolism, fatty acid metabolism, and regulation of inflammatory responses, and they exhibit various molecular functions including NAD(P)+ nucleosidase activity, lipase activity, and lipid transporter activity. KEGG pathway analysis further demonstrated significant enrichment of DEGs in several key biological pathways, notably the PI3K-Akt signaling pathway, PPAR signaling pathway, and cholesterol metabolism-related pathways. PPI network analysis further identified PPARγ, Src, and Manf as critical regulatory nodes, suggesting their important roles in high-fat diet-induced obesity and lipid metabolism dysregulation.

Conclusions

A high-fat diet significantly alters the expression of genes related to lipid metabolism and inflammatory regulation in the mouse liver. Key genes such as PPARγ, Src, and Manf interact to form a complex regulatory network.

图1 差异表达基因的火山图注:纵坐标表示log2(倍数变化),横坐标为-log10(P值)。每个点代表一个基因,其中灰色点表示表达无显著差异的基因,红色点表示表达上调的差异基因(755个),蓝色点表示表达下调的差异基因(414个)
图2 差异基因的层次聚类图注:热图中的每一行代表一个基因,不同列代表不同样本;橙色代表上调基因,蓝色代表下调基因
表1 差异表达基因GO富集分析(生物学过程)
表2 差异表达基因GO富集分析(分子功能)
表3 差异表达基因KEGG富集分析
图3 蛋白质互相作用网络图注:A为PPI网络图,显示重要的节点有PPARγ、Src等;B为PPI网络图导入Cytoscap3.9.1软件得到,其中颜色越深代表度值越高。PPARγ为过氧化物酶体、Src为蛋白酪氨酸激酶、Manf为神经营养因子。C为用Cytohubba插件中最大集团中心性(MCC)分析方法筛选top10 Hub基因,颜色越深代表基因Rank值越高,Manf、Src排序第一;PPARγ排序第三;Tuba4a排序第四;Anxa5、Endod1排序第五;Cidec、Apoa4、Apoc2、Vimp排序第七
[1]
孙铭遥, 陈伟.《中国超重/肥胖医学营养治疗指南(2021)》解读 [J]. 协和医学杂志, 2022, 13(02): 255-262.
[2]
Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update [J]. Metabolism. 2016, 65(8): 1109-1123.
[3]
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J]. Nucleic Acids Res, 2002, 30(1): 207-210.
[4]
Salic K, Gart E, Seidel F, Verschuren L et al. Combined treatment with L-carnitine and nicotinamide riboside improves hepatic metabolism and attenuates obesity and liver steatosis [J]. Int J Mol Sci, 2019, 20(18): 4359.
[5]
Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological networks [J]. Bioinformatics, 2010, 26(8): 1105-1111.
[6]
Chen W, Hong YQ, Meng ZL. Bioinformatics analysis of molecular mechanisms of chronic obstructive pulmonary disease [J]. Eur Rev Med Pharmacol Sci, 2014, 18(23): 3557-3563.
[7]
Sherman BT, Huang da W, Tan Q et al. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis [J]. BMC Bioinformatics, 2007, 8: 426.
[8]
李显兰, 陈莉. 儿童、青少年肥胖症的流行现状及病因探讨 [J]. 重庆医学, 2013, 42(02): 226-228.
[9]
Sularea VM, Sugrue JA, O'Farrelly C. Innate antiviral immunity and immunometabolism in hepatocytes [J]. Curr Opin Immunol, 2022, 80:102267.
[10]
吕慧婕, 许拓, 彭俊, 等. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制(英文) [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839.
[11]
Ng M, Fleming T, Robinson M. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J]. Lancet. 2014, 384(9945): 766-781.
[12]
Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis [J]. Clin Mol Hepatol, 2023, 29(1): 77-98.
[13]
Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses [J]. Metabolism, 2021, 114: 154338.
[14]
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions [J]. Nat Rev Cardiol, 2021, 18(12): 809-823.
[15]
Tang W, Ding Z, Gao H, et al. Targeting Kindlin-2 in adipocytes increases bone mass through inhibiting FAS/PPARγ/FABP4 signaling in mice [J]. Acta Pharm Sin B, 2023, 13(11): 4535-4552.
[16]
Hallenborg P, Petersen RK, Kouskoumvekaki I, et al. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects [J]. Prog Lipid Res, 2016, 61: 149-162.
[17]
Chen H, Tan H, Wan J, et al. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets [J]. Pharmacol Ther, 2023, 245: 108391.
[18]
Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? [J]. Metabolism, 2024, 157: 155937.
[19]
Zhang X, Ding X, Wang C, et al. Depletion of JunB increases adipocyte thermogenic capacity and ameliorates diet-induced insulin resistance [J]. Nat Metab, 2024, 6(1): 78-93.
[20]
Zheng M, Wang C, Hu M, et al. Research progress on the association of insulin resistance with type 2 diabetes mellitus and Alzheimer's disease [J]. Metab Brain Dis, 2024, 40(1): 35.
[21]
Ma X, Xu L, Wang S, et al. Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis [J]. J Hepatol, 2011, 55(2): 445-452.
[22]
Ahuja P, Bi X, Ng CF, et al. Src homology 3 domain binding kinase 1 protects against hepatic steatosis and insulin resistance through the Nur77-FGF21 pathway [J]. Hepatology, 2023, 77(1): 213-229.
[23]
Viswakarma N, Jia Y, Bai L, et al. Coactivators in PPAR-Regulated Gene Expression [J]. PPAR Res, 2010: 250126.
[24]
Tang Q, Li Y, He J. MANF: an emerging therapeutic target for metabolic diseases [J]. Trends Endocrinol Metab, 2022, 33(4): 236-246.
[25]
Kitamura RA, Hummel D, Ustione A, et al. Dual role of neuroplastin in pancreatic β cells: Regulating insulin secretion and promoting islet inflammation [J]. Proc Natl Acad Sci USA, 2024, 121(33): e2411234121.
[1] 丁天宇, 白新娜, 王雅丽, 申婷, 张剑英. 口腔-神经疾病研究中的秀丽隐杆线虫阿尔茨海默病模型转录组特征分析[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 160-169.
[2] 陈斌雄, 谢铭. 袖状胃切除术与胃旁路术对肥胖合并T2DM的治疗效果[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 461-466.
[3] 陆嘉杰, 严帅, 蔡卫华, 吴金柱. 肥胖症患者袖状胃切除术后体重反弹的相关因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 349-352.
[4] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[5] 马秋双, 杨茗涵, 王耀林, 兰莹莹, 刘子腾, 张金库. 非小细胞肺癌中血清外泌体人源微小RNA-195-5p 的表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 261-265.
[6] 迟云霞, 吕强, 郑颖, 朱晗玉, 蔡广研, 陈香美. 肾脏病学研究生生物信息学教学的思考与实践[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 115-117.
[7] 李祖涛, 阿布都艾尼·热吾提, 车立新, 徐江波, 赵清斌. 应用生物信息学技术鉴定并验证绝经后骨质疏松症中靶点基因[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 193-200.
[8] 夏炎, 朱帅帅, 张岩松. 基于生物信息学和机器学习探究前庭神经鞘瘤生物标志物在免疫微环境中的相关功能[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 171-179.
[9] 吴振帼, 于岩波, 李延青. 内镜减重与代谢疗法的治疗新进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 193-198.
[10] 洪敏, 许建峰, 丰陈. 内脏型肥胖对结直肠癌根治术患者术后感染并发症的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 199-204.
[11] 王美, 赵勇, 张健, 张俐娜, 丁健华, 曹煜. 基于CT测量肾周脂肪面积对Lap-ISR吻合口并发症的预测价值[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 367-373.
[12] 王武杰, 郎丽娟, 孙一然, 刘斌, 王永正, 周彤, 李玉亮. 胃左动脉栓塞术治疗肥胖症患者一例[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 184-186.
[13] 邓绮玲, 庄杰兰, 董家铭, 苏镜. 基于生物信息学分析原发性痛风性关节炎与高尿酸血症的关键基因及相关通路[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 97-105.
[14] 谢礼锋, 贾静, 陈琦玮, 柳燕, 李新宇. 定锚法脐部整形缝合技术在经脐单孔腹腔镜减重手术中的应用[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 92-99.
[15] 郑锐滨, 赵象文. 肥胖与非肥胖人群血清代谢激素谱的差异分析[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 100-103.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?