切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 200 -205. doi: 10.3877/cma.j.issn.2095-9605.2024.03.007

综述

肥胖脂肪代谢及肠道微生物群异常与骨关节炎关系的研究进展
罗斯敏(), 周苗苗, 石绮屏   
  1. 510632 广州,暨南大学附属第一医院骨关节科;515700 潮州,暨南大学附属第一医院潮汕医院
    510632 广州,暨南大学附属第一医院骨关节科
    510632 广州,暨南大学附属第一医院内分泌科
  • 收稿日期:2024-08-01 出版日期:2024-08-30
  • 通信作者: 罗斯敏
  • 基金资助:
    广州市市校联合资助基础研究项目(202201020566)

Research Progress on the Relationship Between Obesity, Abnormal Fat Metabolism, Gut Microbiota, and Osteoarthritis

Simin Luo(), Miaomiao Zhou, Qiping Shi   

  1. Department of Osteoarthritis, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Chaoshan Hospital, First Affiliated Hospital of Jinan University, Chaozhou 515700, China
    Department of Osteoarthritis, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
    Department of Endocrinology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
  • Received:2024-08-01 Published:2024-08-30
  • Corresponding author: Simin Luo
引用本文:

罗斯敏, 周苗苗, 石绮屏. 肥胖脂肪代谢及肠道微生物群异常与骨关节炎关系的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 200-205.

Simin Luo, Miaomiao Zhou, Qiping Shi. Research Progress on the Relationship Between Obesity, Abnormal Fat Metabolism, Gut Microbiota, and Osteoarthritis[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(03): 200-205.

肥胖与骨关节炎发展之间的关系通常被解释为超重导致的过度关节劳损的后果。既往研究提出代谢性骨关节炎的假设,并提示脂肪代谢和肠道微生物是介导骨关节炎进展的重要因素。合并代谢综合征的患者体内各种炎症因子上调,包括磷脂酶A2、瘦素、脂联素、血清抵抗素、趋化素和丝氨酸蛋白酶抑制剂等,通过调控多种炎症途径影响骨关节炎的病情进展;肠道微生物的失调也可通过多种途径影响关节软骨和关节周围组织的代谢,从而影响关节炎症和软骨改变,介导了关节炎的发展。本文总结了肥胖脂肪代谢及肠道微生物群异常与骨关节炎之间关系的研究进展,以期为肥胖相关骨关节炎的防治提供新的思路和方向。

The relationship between obesity and the development of osteoarthritis is usually explained as the result of excessive joint strain caused by overweight. Previous studies put forward the hypothesis of metabolic osteoarthritis, and suggested that fat metabolism and intestinal microorganisms are important factors mediating the progress of osteoarthritis. Various inflammatory factors in patients with metabolic syndrome are up-regulated, including phospholipase A2, leptin, adiponectin, serum resistin, chemokine and serine protease inhibitor, which affect the progression of osteoarthritis by regulating various inflammatory pathways. The imbalance of enteric microorganisms can also affect the metabolism of articular cartilage and tissues around joints in many ways, thus affecting joint inflammation and cartilage changes and mediating the development of arthritis. This paper points out the research progress on the relationship between obesity fat metabolism, abnormal intestinal microflora and osteoarthritis, and provides new ideas and directions for the prevention and treatment of obesity-related osteoarthritis.

表1 脂肪因子与骨关节炎的关系
[1]
Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options [J]. Med Clin North Am, 2020, 104(2): 293-311.
[2]
Silvestre MP, Rodrigues AM, Canhão H, et al. Cross-talk between diet-associated dysbiosis and hand osteoarthritis [J]. Nutrients, 2020, 12(11): 3469.
[3]
Wei Z, Li F, Pi G. Association between gut microbiota and osteoarthritis: a review of evidence for potential mechanisms and therapeutics [J]. Front Cell Infect Microbiol, 2022, 12: 812596.
[4]
Rios JL, Bomhof MR, Reimer RA, et al. Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity [J]. Sci Rep, 2019, 9(1): 3893.
[5]
Sampath SJP, Venkatesan V, Ghosh S, et al. Obesity, metabolic syndrome, and osteoarthritis-an updated review [J]. Curr Obes Rep, 2023, 12(3): 308-331.
[6]
Steinl D, Holzerny P, Ruckdäschel S, et al. Cost of overweight, obesity, and related complications in Switzerland 2021[J]. Front Public Health, 2024, 12: 1335115.
[7]
Ertürk C, Altay MA, Bilge A, et al. Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? [J]. Clin Rheumatol, 2017, 36(12): 2775-2780.
[8]
Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis [J]. Cytokine Growth Factor Rev, 2018, 44: 38-50.
[9]
Gautieri A, Passini FS, Silván U, et al. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue [J]. Matrix Biol, 2017, 59: 95-108.
[10]
Tchetina EV, Markova GA, Sharapova EP. Insulin resistance in osteoarthritis: similar mechanisms to type 2 diabetes mellitus [J]. J Nutr Metab, 2020, 2020: 4143802.
[11]
Sun AR, Panchal SK, Friis T, et al. Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis [J]. PLoS One, 2017, 12(8): e0183693.
[12]
Sekar S, Crawford R, Xiao Y, et al. Dietary Fats and Osteoarthritis: Insights, Evidences, and New Horizons [J]. J Cell Biochem, 2017, 118(3): 453-463.
[13]
Ait Eldjoudi D, Cordero Barreal A, Gonzalez-Rodríguez M, et al. Leptin in Osteoarthritis and Rheumatoid Arthritis: Player or Bystander? [J]. Int J Mol Sci, 2022, 23(5): 2859.
[14]
Gadeholt O, Arnold E, Gorman C, et al. Body mass index stratification enables cytokine-based prediction of ACPA status and Power-Doppler disease activity in rheumatoid arthritis [J]. Clin Rheumatol, 2024, 43(8): 2445-2452.
[15]
Xiang W, Ji B, Jiang Y, et al. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review [J]. Front Vet Sci, 2022, 9: 938629.
[16]
Lee YH, Song GG. Circulating leptin level in osteoarthritis and associations between leptin receptor polymorphisms and disease susceptibility: A meta-analysis [J]. Int J Rheum Dis, 2023, 26(7): 1305-1313.
[17]
Yan M, Zhang J, Yang H, et al. The role of leptin in osteoarthritis [J]. Medicine (Baltimore), 2018, 97(14): e0257.
[18]
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, et al. The interplay between obesity and inflammation [J]. Life (Basel), 2024, 14(7): 856.
[19]
Shumnalieva R, Kotov G, Ermencheva P, et al. Pathogenic mechanisms and therapeutic approaches in obesity-related knee osteoarthritis[J]. Biomedicines, 2023, 12(1): 9.
[20]
Recinella L, Orlando G, Ferrante C, et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases [J]. Front Physiol, 2020, 11: 578966.
[21]
Francisco V, Pino J, Campos-Cabaleiro V, et al. Obesity, fat mass and immune system: role for leptin [J]. Front Physiol, 2018, 9: 640.
[22]
Meert L, Vervullens S, Heusdens CHW, et al. Unravelling relationships between obesity, diabetes, and factors related to somatosensory functioning in knee osteoarthritis patient [J]. Clin Rheumatol, 2024, 43(8): 2637-2645.
[23]
Rockel JS, Potla P, Kapoor M. Transcriptomics and metabolomics: Challenges of studying obesity in osteoarthritis [J]. Osteoarthr Cartil Open, 2024, 6(3): 100479.
[24]
Tu C, He J, Wu B, et al. An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis [J]. Cytokine, 2019, 113: 1-12.
[25]
Harasymowicz NS, Azfer A, Burnett R, et al. Chondrocytes from osteoarthritic cartilage of obese patients show altered adiponectin receptors expression and response to adiponectin [J]. J Orthop Res, 2021, 39(11): 2333-2339.
[26]
Feng X, Xiao J, Bai L. Role of adiponectin in osteoarthritis [J]. Front Cell Dev Biol, 2022, 10: 992764.
[27]
Zhao CW, Gao YH, Song WX, et al. An Update on the emerging role of resistin on the pathogenesis of osteoarthritis [J]. Mediators Inflamm, 2019, 2019: 1532164.
[28]
Theyse LFH, Mazur EM. Osteoarthritis, adipokines and the translational research potential in small animal patients [J]. Front Vet Sci, 2024, 11: 1193702.
[29]
Wang J, Zhang K, Zhang S, et al. Vaspin promotes chondrogenic differentiation of BMSCs via Akt activation in osteoarthritis [J]. BMC Musculoskelet Disord, 2022, 23(1): 344.
[30]
Wang Y, Wang M, Chen J, et al. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9 [J]. Science, 2023, 381(6660): 851-857.
[31]
Calvigioni M, Bertolini A, Codini S, et al. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains [J]. Front Microbiol, 2023, 14: 1124144.
[32]
Baek GH, Yoo KM, Kim SY, et al. Collagen peptide exerts an anti-obesity effect by influencing the firmicutes/bacteroidetes ratio in the gut [J]. Nutrients, 2023, 15(11).DOI: 10.3390/nu15112610
[33]
Liu M, Matuszek G, Azcarate-Peril MA, et al. An exploratory case-control study on the associations of bacterially-derived vitamin k forms with the intestinal microbiome and obesity-related osteoarthritis [J]. Curr Dev Nutr, 2023, 7(3): 100049.
[34]
Marchese L, Contartese D, Giavaresi G, et al. The complex interplay between the gut microbiome and osteoarthritis: a systematic review on potential correlations and therapeutic approaches [J]. Int J Mol Sci, 2023, 25(1): 143.
[35]
Xiang W, Ji B, Jiang Y, et al. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review[J]. Front Vet Sci, 2022, 9: 938629.
[36]
Huang Z, Kraus VB. Does lipopolysaccharide-mediated inflammation have a role in OA? [J]. Nat Rev Rheumatol, 2016, 12(2): 123-129.
[37]
Berthelot JM, Sellam J, Maugars Y, et al. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis [J]. RMD Open, 2019, 5(2): e001037.
[38]
Zeddou M. Osteoarthritis is a low-grade inflammatory disease: obesity's involvement and herbal treatment [J]. Evid Based Complement Alternat Med, 2019, 2019: 2037484.
[39]
Holub MN, Wahhab A, Rouse JR, et al. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation [J]. Arthritis Res Ther, 2024, 26(1): 77.
[40]
Biver E, Berenbaum F, Valdes AM, et al. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) [J]. Ageing Res Rev, 2019, 55: 100946.
[41]
Dong N, Gao YH, Liu B, et al. Differential expression of adipokines in knee osteoarthritis patients with and without metabolic syndrome [J]. Int Orthop, 2018, 42(6): 1283-1289.
[42]
Lee JY, Mannaa M, Kim Y, et al. Comparative analysis of fecal microbiota composition between rheumatoid arthritis and osteoarthritis patients [J]. Genes (Basel), 2019, 10(10): 748.
[43]
Lee YH, Song GG. The Gut Microbiome and Osteoarthritis: A two-sample mendelian randomization study [J]. J Rheum Dis, 2021, 28(2): 94-100.
[44]
Lian WS, Wang FS, Chen YS, et al. Gut Microbiota ecosystem governance of host inflammation, mitochondrial respiration and skeletal homeostasis [J]. Biomedicines, 2022, 10(4): 860.
[45]
Siddiqui R, Makhlouf Z, Alharbi AM, et al. The gut microbiome and female health [J]. Biology (Basel), 2022, 11(11): 1683.
[46]
Fortuna R, Wang W, Mayengbam S, et al. Effect of prebiotic fiber on physical function and gut microbiota in adults, mostly women, with knee osteoarthritis and obesity: a randomized controlled trial [J]. Eur J Nutr, 2024, 63(6):2149-2161.
[47]
Zhao Y, Chen B, Li S, et al. Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients [J]. Sci Rep, 2018, 8(1): 14305.
[48]
Guan Z, Jin X, Guan Z, et al. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1α to inhibit knee osteoarthritis-induced ferroptosis [J]. Aging Cell, 2023, 22(6): e13807.
[49]
Qi Z, Zhu J, Cai W, et al. The role and intervention of mitochondrial metabolism in osteoarthritis [J]. Mol Cell Biochem, 2024, 479(6): 1513-1524.
[50]
I OS, Natarajan Anbazhagan A, Singh G, et al. Lactobacillus acidophilus mitigates osteoarthritis-associated pain, cartilage disintegration and gut microbiota dysbiosis in an experimental murine OA model [J]. Biomedicines, 2022, 10(6): 1298.
[51]
Liu Q, Hao H, Li J, et al. Oral Administration of bovine milk-derived extracellular vesicles attenuates cartilage degeneration via modulating gut microbiota in DMM-Induced mice [J]. Nutrients, 2023, 15(3): 747.
[52]
Lei M, Guo C, Wang D, et al. The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial [J]. Benef Microbes, 2017, 8(5): 697-703.
[53]
Taye I, Bradbury J, Grace S, et al. Probiotics for pain of osteoarthritis; An N-of-1 trial of individual effects [J]. Complement Ther Med, 2020, 54: 102548.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[8] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[9] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[10] 刘见, 杨晓波, 何均健, 等. 应用电钩三孔法腹腔镜袖状胃切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(06): 363-364.
[11] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[12] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[13] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
阅读次数
全文


摘要