[1] |
El-Badawy RE, Ibrahim KA, Hassan NS, et al. Pterocarpus santalinus ameliorates streptozotocin-induced diabetes mellitus via anti-inflammatory pathways and enhancement of insulin function [J]. Iranian journal of basic medical sciences, 2019, 22(8): 932-939.
|
[2] |
Tubbs E, Theurey P, Vial G, et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance [J]. Diabetes, 2014, 63(10): 3279-3294.
|
[3] |
Ruegsegger GN, Creo AL, Cortes TM, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states [J]. J Clin Invest, 2018, 128(9): 3671-3681.
|
[4] |
Ng YS, Lim AZ, Panagiotou G, et al. Endocrine manifestations and new developments in mitochondrial disease [J]. Endocr Rev, 2021, 43(3): 583-609.
|
[5] |
Cao K, Lv W, Wang X, et al. Hypermethylation of hepatic mitochondrial ND6 provokes systemic insulin resistance [J]. Adv Sci (Weinh), 2021, 8(11): 2004507.
|
[6] |
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics [J]. Nat Rev Mol Cell Biol, 2020, 21(4): 204-224.
|
[7] |
Jezek P, Jaburek M, Plecita-Hlavata L. Contribution of oxidative stress and impaired biogenesis of pancreatic beta-cells to type 2 diabetes [J]. Antioxid Redox Signal, 2019, 31(10): 722-751.
|
[8] |
Sharoyko VV, Abels M, Sun J, et al. Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes [J]. Hum Mol Genet, 2014, 23(21): 5733-5749.
|
[9] |
Krauss S, Zhang CY, Scorrano L, et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction [J]. J Clin Invest, 2003, 112(12): 1831-1842.
|
[10] |
Las G, Oliveira MF, Shirihai OS. Emerging roles of beta-cell mitochondria in type-2-diabetes [J]. Mol Aspects Med, 2020, 71: 100843.
|
[11] |
Assali E A, Shlomo D, Zeng J, et al. Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in beta cells under lipotoxicity [J]. FASEB J, 2019, 33(3): 4154-4165.
|
[12] |
Bjorntorp P, Schersten T, Fagerberg SE. Respiration and phosphorylation of mitochondria isolated from the skeletal muscle of diabetic and normal subjects [J]. Diabetologia, 1967, 3(3): 346-352.
|
[13] |
Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients [J]. Diabetes, 2007, 56(5): 1376-1381.
|
[14] |
Pinti MV, Fink GK, Hathaway QA, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis [J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285.
|
[15] |
Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes [J]. Diabetes, 2002, 51(10): 2944-2950.
|
[16] |
Tubbs E, Chanon S, Robert M, et al. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) Integrity contributes to muscle insulin resistance in mice and humans [J]. Diabetes, 2018, 67(4): 636-650.
|
[17] |
Makrecka-Kuka M, Liepinsh E, Murray AJ, et al. Altered mitochondrial metabolism in the insulin-resistant heart [J]. Acta Physiol (Oxf), 2020, 228(3): e13430.
|
[18] |
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes [J]. Science, 2005, 307(5708): 384-387.
|
[19] |
Menshikova EV, Ritov VB, Dube JJ, et al. Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity [J]. J Gerontol A Biol Sci Med Sci, 2017, 73(1): 81-87.
|
[20] |
Johnson ML, Distelmaier K, Lanza IR, et al. Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults [J]. Diabetes, 2016, 65(1): 74-84.
|
[21] |
Wredenberg A, Freyer C, Sandström ME, et al. Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance [J]. Biochemical and biophysical research communications, 2006, 350(1): 202-207.
|
[22] |
Schmid AI, Szendroedi J, Chmelik M, et al. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes [J]. Diabetes Care, 2011, 34(2): 448-453.
|
[23] |
Misu H, Takamura T, Matsuzawa N, et al. Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes [J]. Diabetologia, 2007, 50(2): 268-277.
|
[24] |
Fritsch M, Koliaki C, Livingstone R, et al. Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients [J]. Am J Clin Nutr, 2015, 102(5): 1051-1058.
|
[25] |
Nair S, Chacko VP, Arnold C, et al. Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals [J]. American Journal of Gastroenterology, 2003, 98(2): 466-470.
|
[26] |
Takamura T, Misu H, Matsuzawa-Nagata N, et al. Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients [J]. Obesity (Silver Spring), 2008, 16(12): 2601-2609.
|
[27] |
Rusu V, Hoch E, Mercader JM, et al. Type 2 diabetes variants disrupt function of slc16a11 through two distinct mechanisms [J]. Cell, 2017, 170(1): 199-212.
|
[28] |
Cheng Z, Guo S, Copps K, et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver [J]. Nat Med, 2009, 15(11): 1307-1311.
|
[29] |
Knowles JW, Xie W, Zhang Z, et al. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene [J]. J Clin Invest, 2016, 126(1): 403.
|
[30] |
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese [J]. Biomed Pharmacother, 2021, 137: 111315.
|
[31] |
Chennamsetty I, Coronado M, Contrepois K, et al. Nat1 deficiency is associated with mitochondrial dysfunction and exercise intolerance in mice [J]. Cell Rep, 2016, 17(2): 527-540.
|
[32] |
Moreno-Santos I, Perez-Belmonte LM, Macias-Gonzalez M, et al. Type 2 diabetes is associated with decreased PGC1alpha expression in epicardial adipose tissue of patients with coronary artery disease [J]. J Transl Med, 2016, 14(1): 243.
|
[33] |
Hansen M, Lund M T, Gregers E, et al. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB [J]. Obesity (Silver Spring), 2015, 23(10): 2022-2029.
|
[34] |
Jahansouz C, Serrot FJ, Frohnert BI, et al. Roux-en-Y gastric bypass acutely decreases protein carbonylation and increases expression of mitochondrial biogenesis genes in subcutaneous adipose tissue [J]. Obes Surg, 2015, 25(12): 2376-2385.
|
[35] |
Bogacka I, Xie H, Bray GA, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo [J]. Diabetes, 2005, 54(5): 1392-1399.
|
[36] |
Khunti K, Chatterjee S, Gerstein HC, et al. Do sulphonylureas still have a place in clinical practice? [J]. Lancet Diabetes Endocrinol, 2018, 6(10): 821-832.
|
[37] |
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes [J]. Diabetes Care, 2015, 38(1): 140-149.
|
[38] |
Madiraju AK, Qiu Y, Perry RJ, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo [J]. Nat Med, 2018, 24(9): 1384-1394.
|
[39] |
Zhang Y, Ye J. Mitochondrial inhibitor as a new class of insulin sensitizer [J]. Acta Pharm Sin B, 2012, 2(4): 341-349.
|
[40] |
Jiang SJ, Dong H, Li JB, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats [J]. World J Gastroenterol, 2015, 21(25): 7777-7785.
|
[41] |
El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I [J]. J Biol Chem, 2000, 275(1): 223-228.
|
[42] |
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action [J]. Endocr Rev, 2021, 42(1): 77-96.
|
[43] |
Apostolova N, Iannantuoni F, Gruevska A, et al. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions [J]. Redox Biol, 2020, 34: 101517.
|
[44] |
Pinkosky SL, Scott JW, Desjardins EM, et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK beta1 isoforms [J]. Nat Metab, 2020, 2(9): 873-881.
|
[45] |
Ruderman NB, Carling D, Prentki M, et al. AMPK, insulin resistance, and the metabolic syndrome [J]. J Clin Invest, 2013, 123(7): 2764-2772.
|
[46] |
Muller T D, Finan B, Bloom S R, et al. Glucagon-like peptide 1 (GLP-1) [J]. Mol Metab, 2019, 30: 72-130.
|
[47] |
Sodhi RK, Singh N, Jaggi AS. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer's disease [J]. Naunyn Schmiedebergs Arch Pharmacol, 2011, 384(2): 115-124.
|
[48] |
Jung TW, Lee JY, Shim WS, et al. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production [J]. J Neurol Sci, 2007, 253(1-2): 53-60.
|
[49] |
Wei X, Song H, Yin L, et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes [J]. Nature, 2016, 539(7628): 294-298.
|
[50] |
Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes, and related disorders [J]. Immunity, 2022, 55(1): 31-55.
|
[51] |
Xing W, Li Y, Zhang H, et al. Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats [J]. Am J Physiol Heart Circ Physiol, 2013, 305(8): H1111-H1119.
|
[52] |
Wang D, Jiang DM, Yu RR, et al. The effect of aerobic exercise on the oxidative capacity of skeletal muscle mitochondria in mice with impaired glucose tolerance [J]. J Diabetes Res, 2022, 2022: 3780156.
|
[53] |
Monno I, Ogura Y, Xu J, et al. Exercise Ameliorates diabetic kidney disease in type 2 diabetic fatty rats [J]. Antioxidants (Basel), 2021, 10(11): 1754.
|
[54] |
Ye J. Mechanisms of insulin resistance in obesity [J]. Front Med, 2013, 7(1): 14-24.
|