切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2022, Vol. 08 ›› Issue (03) : 147 -153. doi: 10.3877/cma.j.issn.2095-9605.2022.03.001

专家论坛

线粒体参与2型糖尿病发生发展的研究进展
李泽1, 刘慧2, 蒲雪茵1, 刘勃志1, 吴菲菲1, 杨雁灵3,(), 王亚云4,()   
  1. 1. 710032 西安,空军军医大学基础医学院基础医学教学实验中心
    2. 716099 延安,延安大学医学院基础医学院
    3. 710032 西安,空军军医大学第一附属医院肝胆胰脾外科
    4. 710032 西安,空军军医大学基础医学院基础医学教学实验中心;710032 西安,空军军医大学口腔医院军事口腔医学国家重点实验室
  • 收稿日期:2022-03-31 出版日期:2022-08-30
  • 通信作者: 杨雁灵, 王亚云
  • 基金资助:
    国家自然科学基金(81870415); 陕西省重点研发计划(2018ZDXM-SF-082); 陕西省基础研究项目(2018JZ8003); 军队口腔重点实验室开放课题(2018KA01)

Theresearch progress on the involvement of mitochondria in the occurrence and development of T2DM

Ze Li1, Hui Liu2, Xueyin Pu1, Bozhi Liu1, Feifei Wu1, Yanling Yang3,(), Yayun Wang4,()   

  1. 1. Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi’an 710032, China
    2. Medical College of Yan'an Universit, Yan'an 716099, China
    3. Department of Hepatic Surgery, the First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China
    4. Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi’an 710032, China; National Key Laboratory of Military Stomatology Department of Stomatology Hospital of Air Force Military Medical University, Xi’an 710032, China
  • Received:2022-03-31 Published:2022-08-30
  • Corresponding author: Yanling Yang, Yayun Wang
引用本文:

李泽, 刘慧, 蒲雪茵, 刘勃志, 吴菲菲, 杨雁灵, 王亚云. 线粒体参与2型糖尿病发生发展的研究进展[J]. 中华肥胖与代谢病电子杂志, 2022, 08(03): 147-153.

Ze Li, Hui Liu, Xueyin Pu, Bozhi Liu, Feifei Wu, Yanling Yang, Yayun Wang. Theresearch progress on the involvement of mitochondria in the occurrence and development of T2DM[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2022, 08(03): 147-153.

2型糖尿病(T2DM)是糖尿病最常见类型,主要表现为组织对胰岛素作用不敏感即胰岛素抵抗,并伴有胰岛素分泌不足,其病理生理学机制尚未完全阐明。线粒体(mitochondria)作为细胞能量代谢中心,其结构和功能异常在T2DM发生发展中扮演了重要角色。本文回顾线粒体功能异常参与T2DM的信号通路机制与当前一线降糖药对线粒体形态与功能的影响,以期从线粒体角度阐明T2DM分子机制,为开发以线粒体为靶点的临床策略提供线索。

Type 2 diabetes mellitus (T2DM) is the most prevalent type of diabetes. T2DM is predominantly caused by tissue insensitivity to insulin action (insulin resistance) accompanied by insufficient insulin secretion. Its pathophysiological mechanism is still unclear. The latest research shows that mitochondria, as the center of cellular energy metabolism, whose abnormal structure and function play an important role in the occurrence and development of T2DM. This review mainly reviews the signaling pathway mechanism of abnormal mitochondrial function involved in T2DM, and the effects of current first-line hypoglycemic drugs on mitochondrial morphology and function. This article aims to provide an important basis for elucidating the molecular mechanism of T2DM and developing new clinical strategies by targeting mitochondria.

图1 胰岛β细胞线粒体异常参与T2DM的分子机制。当胰岛β细胞(pancreatic β cell)的线粒体功能受损时,其ATP产生减少,削弱钾离子ATP通道(K+-ATP channel),进而导致电压门控钙离子通道(VDCC)无法打开,最终Ca2+无法充分内流刺激胰岛素分泌颗粒(insulin secretory granules)向质膜移动,导致胰岛素释放减少。CAMK:钙调蛋白激酶
图2 骨骼肌线粒体异常参与T2DM的分子机制。在骨骼肌中,细胞线粒体功能受损使ROS产生增加,进而激活c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)使IRS丝/苏氨酸位点磷酸化,从而抑制胰岛素信号传导;而这又会进一步导致线粒体β氧化功能受损,导致DAG累积,加剧IRS通路受损[18]。PKC:蛋白激酶C
图1 一线T2DM药物对线粒体结构和功能的影响。二甲双胍可抑制线粒体呼吸链复合物1降低ATP,从而使AMP/ATP比值增加,激活AMPK,进一步抑制糖异生关键酶PEPCK,最终达到抑制糖异生(gluconeogenesis)的效应。二甲双胍还可抑制线粒体上mG3PDH酶,降低FADH2,进一步抑制乳酸脱氢酶,使乳酸转化为丙酮酸减少,最终使糖异生降低。噻唑烷二酮类药物(troglitazone,TZD)通过增加AMP/ATP比值或激活PPARg而激活AMPK,最终降低糖异生;另一方面,通过使线粒体ROS生成减少,同时也抑制了糖异生。噻唑烷二酮类药物(troglitazone,TZD)可以作用于AMPK使线粒体ROS生成减少,同时也抑制了糖异生。胰高血糖素受体1激动剂(GLP-1RA)可减少ROS生成,改善细胞氧化呼吸功能。FADH2:还原黄素腺嘌呤二核苷酸;complex 1:线粒体复合物1;ROS:活性氧;ATP:腺嘌呤核苷三磷酸;AMP:腺嘌呤核糖核苷酸;NADH:烟酰胺腺嘌呤二核苷酸
[1]
El-Badawy RE, Ibrahim KA, Hassan NS, et al. Pterocarpus santalinus ameliorates streptozotocin-induced diabetes mellitus via anti-inflammatory pathways and enhancement of insulin function [J]. Iranian journal of basic medical sciences, 2019, 22(8): 932-939.
[2]
Tubbs E, Theurey P, Vial G, et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance [J]. Diabetes, 2014, 63(10): 3279-3294.
[3]
Ruegsegger GN, Creo AL, Cortes TM, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states [J]. J Clin Invest, 2018, 128(9): 3671-3681.
[4]
Ng YS, Lim AZ, Panagiotou G, et al. Endocrine manifestations and new developments in mitochondrial disease [J]. Endocr Rev, 2021, 43(3): 583-609.
[5]
Cao K, Lv W, Wang X, et al. Hypermethylation of hepatic mitochondrial ND6 provokes systemic insulin resistance [J]. Adv Sci (Weinh), 2021, 8(11): 2004507.
[6]
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics [J]. Nat Rev Mol Cell Biol, 2020, 21(4): 204-224.
[7]
Jezek P, Jaburek M, Plecita-Hlavata L. Contribution of oxidative stress and impaired biogenesis of pancreatic beta-cells to type 2 diabetes [J]. Antioxid Redox Signal, 2019, 31(10): 722-751.
[8]
Sharoyko VV, Abels M, Sun J, et al. Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes [J]. Hum Mol Genet, 2014, 23(21): 5733-5749.
[9]
Krauss S, Zhang CY, Scorrano L, et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction [J]. J Clin Invest, 2003, 112(12): 1831-1842.
[10]
Las G, Oliveira MF, Shirihai OS. Emerging roles of beta-cell mitochondria in type-2-diabetes [J]. Mol Aspects Med, 2020, 71: 100843.
[11]
Assali E A, Shlomo D, Zeng J, et al. Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in beta cells under lipotoxicity [J]. FASEB J, 2019, 33(3): 4154-4165.
[12]
Bjorntorp P, Schersten T, Fagerberg SE. Respiration and phosphorylation of mitochondria isolated from the skeletal muscle of diabetic and normal subjects [J]. Diabetologia, 1967, 3(3): 346-352.
[13]
Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients [J]. Diabetes, 2007, 56(5): 1376-1381.
[14]
Pinti MV, Fink GK, Hathaway QA, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis [J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285.
[15]
Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes [J]. Diabetes, 2002, 51(10): 2944-2950.
[16]
Tubbs E, Chanon S, Robert M, et al. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) Integrity contributes to muscle insulin resistance in mice and humans [J]. Diabetes, 2018, 67(4): 636-650.
[17]
Makrecka-Kuka M, Liepinsh E, Murray AJ, et al. Altered mitochondrial metabolism in the insulin-resistant heart [J]. Acta Physiol (Oxf), 2020, 228(3): e13430.
[18]
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes [J]. Science, 2005, 307(5708): 384-387.
[19]
Menshikova EV, Ritov VB, Dube JJ, et al. Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity [J]. J Gerontol A Biol Sci Med Sci, 2017, 73(1): 81-87.
[20]
Johnson ML, Distelmaier K, Lanza IR, et al. Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults [J]. Diabetes, 2016, 65(1): 74-84.
[21]
Wredenberg A, Freyer C, Sandström ME, et al. Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance [J]. Biochemical and biophysical research communications, 2006, 350(1): 202-207.
[22]
Schmid AI, Szendroedi J, Chmelik M, et al. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes [J]. Diabetes Care, 2011, 34(2): 448-453.
[23]
Misu H, Takamura T, Matsuzawa N, et al. Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes [J]. Diabetologia, 2007, 50(2): 268-277.
[24]
Fritsch M, Koliaki C, Livingstone R, et al. Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients [J]. Am J Clin Nutr, 2015, 102(5): 1051-1058.
[25]
Nair S, Chacko VP, Arnold C, et al. Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals [J]. American Journal of Gastroenterology, 2003, 98(2): 466-470.
[26]
Takamura T, Misu H, Matsuzawa-Nagata N, et al. Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients [J]. Obesity (Silver Spring), 2008, 16(12): 2601-2609.
[27]
Rusu V, Hoch E, Mercader JM, et al. Type 2 diabetes variants disrupt function of slc16a11 through two distinct mechanisms [J]. Cell, 2017, 170(1): 199-212.
[28]
Cheng Z, Guo S, Copps K, et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver [J]. Nat Med, 2009, 15(11): 1307-1311.
[29]
Knowles JW, Xie W, Zhang Z, et al. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene [J]. J Clin Invest, 2016, 126(1): 403.
[30]
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese [J]. Biomed Pharmacother, 2021, 137: 111315.
[31]
Chennamsetty I, Coronado M, Contrepois K, et al. Nat1 deficiency is associated with mitochondrial dysfunction and exercise intolerance in mice [J]. Cell Rep, 2016, 17(2): 527-540.
[32]
Moreno-Santos I, Perez-Belmonte LM, Macias-Gonzalez M, et al. Type 2 diabetes is associated with decreased PGC1alpha expression in epicardial adipose tissue of patients with coronary artery disease [J]. J Transl Med, 2016, 14(1): 243.
[33]
Hansen M, Lund M T, Gregers E, et al. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB [J]. Obesity (Silver Spring), 2015, 23(10): 2022-2029.
[34]
Jahansouz C, Serrot FJ, Frohnert BI, et al. Roux-en-Y gastric bypass acutely decreases protein carbonylation and increases expression of mitochondrial biogenesis genes in subcutaneous adipose tissue [J]. Obes Surg, 2015, 25(12): 2376-2385.
[35]
Bogacka I, Xie H, Bray GA, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo [J]. Diabetes, 2005, 54(5): 1392-1399.
[36]
Khunti K, Chatterjee S, Gerstein HC, et al. Do sulphonylureas still have a place in clinical practice? [J]. Lancet Diabetes Endocrinol, 2018, 6(10): 821-832.
[37]
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes [J]. Diabetes Care, 2015, 38(1): 140-149.
[38]
Madiraju AK, Qiu Y, Perry RJ, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo [J]. Nat Med, 2018, 24(9): 1384-1394.
[39]
Zhang Y, Ye J. Mitochondrial inhibitor as a new class of insulin sensitizer [J]. Acta Pharm Sin B, 2012, 2(4): 341-349.
[40]
Jiang SJ, Dong H, Li JB, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats [J]. World J Gastroenterol, 2015, 21(25): 7777-7785.
[41]
El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I [J]. J Biol Chem, 2000, 275(1): 223-228.
[42]
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action [J]. Endocr Rev, 2021, 42(1): 77-96.
[43]
Apostolova N, Iannantuoni F, Gruevska A, et al. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions [J]. Redox Biol, 2020, 34: 101517.
[44]
Pinkosky SL, Scott JW, Desjardins EM, et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK beta1 isoforms [J]. Nat Metab, 2020, 2(9): 873-881.
[45]
Ruderman NB, Carling D, Prentki M, et al. AMPK, insulin resistance, and the metabolic syndrome [J]. J Clin Invest, 2013, 123(7): 2764-2772.
[46]
Muller T D, Finan B, Bloom S R, et al. Glucagon-like peptide 1 (GLP-1) [J]. Mol Metab, 2019, 30: 72-130.
[47]
Sodhi RK, Singh N, Jaggi AS. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer's disease [J]. Naunyn Schmiedebergs Arch Pharmacol, 2011, 384(2): 115-124.
[48]
Jung TW, Lee JY, Shim WS, et al. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production [J]. J Neurol Sci, 2007, 253(1-2): 53-60.
[49]
Wei X, Song H, Yin L, et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes [J]. Nature, 2016, 539(7628): 294-298.
[50]
Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes, and related disorders [J]. Immunity, 2022, 55(1): 31-55.
[51]
Xing W, Li Y, Zhang H, et al. Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats [J]. Am J Physiol Heart Circ Physiol, 2013, 305(8): H1111-H1119.
[52]
Wang D, Jiang DM, Yu RR, et al. The effect of aerobic exercise on the oxidative capacity of skeletal muscle mitochondria in mice with impaired glucose tolerance [J]. J Diabetes Res, 2022, 2022: 3780156.
[53]
Monno I, Ogura Y, Xu J, et al. Exercise Ameliorates diabetic kidney disease in type 2 diabetic fatty rats [J]. Antioxidants (Basel), 2021, 10(11): 1754.
[54]
Ye J. Mechanisms of insulin resistance in obesity [J]. Front Med, 2013, 7(1): 14-24.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[3] 李晖, 范志勇, 耿西林, 常虎林, 吴武军, 张煜. 肝癌中线粒体膜蛋白ATAD3A表达与临床病理特征及预后的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 157-161.
[4] 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 中华移植杂志(电子版), 2023, 17(04): 205-220.
[5] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[6] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[7] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[8] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[9] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
[10] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[11] 李锦亮, 曾茂娟, 钟金宝, 何伟强, 林文新. 司美格鲁肽对肥胖2型糖尿病患者皮肤微循环功能的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 192-196.
[12] 秦晓光, 毛忠琦, 周晓庆, 谢尔凡, 吴国强, 张敏, 李威杰. 单吻合口胃旁路术对于肥胖及糖尿病患者心脑血管风险的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 120-125.
[13] 穆曼娜, 胡莹清, 李远, 张勇军, 胡细玲, 林倍思, 刘德昭. 氯雷他定联用普瑞巴林治疗2型糖尿病皮肤瘙痒症的临床效果评价[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 114-119.
[14] 戚晓阳, 杨平, 杜忠秋, 邱旭升, 汤黎明, 陈一心. 袖状胃切除术对肥胖合并2型糖尿病大鼠模型骨密度的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 102-108.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要