[1] |
Caballero B. Humans against obesity: Who will win? [J]. Adv Nutr, 2019, 10(suppl_1): S4-S9.
|
[2] |
樊成伟. 肥胖症的研究进展 [J]. 世界最新医学信息文摘, 2021, 21(41): 102-104,107.
|
[3] |
Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity [J]. Immunology, 2018, 155(4): 407-417.
|
[4] |
Zhang B, Yang Y, Xiang L, et al. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes [J]. J Cell Physiol, 2019, 234(10): 16692-16702.
|
[5] |
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J]. Nat Cell Biol, 2019, 21(1): 9-17.
|
[6] |
Pegtel DM, Gould SJ. Exosomes [J]. Annu Rev Biochem, 2019, 88: 487-514.
|
[7] |
Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers [J]. Clin Chim Acta, 2019, 488: 165-171.
|
[8] |
Oses M, Margareto Sanchez J, Portillo M P, et al. Circulating mirnas as biomarkers of obesity and obesity-associated comorbidities in children and adolescents: A systematic review [J]. Nutrients, 2019, 11(12): 2890.
|
[9] |
Castaño C, Kalko S, Novials A, et al. Obesity-associated exosomal mirnas modulate glucose and lipid metabolism in mice [J]. Proc Natl Acad Sci USA, 2018, 115(48): 12158-12163.
|
[10] |
Zhang Y, Bi J, Huang J, et al. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications [J]. Int J Nanomedicine, 2020, 15: 6917-6934.
|
[11] |
Villata S, Canta M, Cauda V. Evs and bioengineering: From cellular products to engineered nanomachines [J]. Int J Mol Sci, 2020, 21(17): 6048.
|
[12] |
Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: Novel mediators of cell communication in metabolic disease [J]. Trends Endocrinol Metab, 2017, 28(1): 3-18.
|
[13] |
Whitford W, Guterstam P. Exosome manufacturing status [J]. Future Med Chem, 2019, 11(10): 1225-1236.
|
[14] |
Yao ZY, Chen WB, Shao SS, et al. Role of exosome-associated microrna in diagnostic and therapeutic applications to metabolic disorders [J]. J Zhejiang Univ Sci B, 2018, 19(3): 183-198.
|
[15] |
Wang W, Zhu N, Yan T, et al. The crosstalk: Exosomes and lipid metabolism [J]. Cell Commun Signal, 2020, 18(1): 119.
|
[16] |
Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: From biogenesis to uptake and intracellular signalling [J]. Cell Commun Signal, 2021, 19(1): 47.
|
[17] |
Jonas S, Izaurralde E. Towards a molecular understanding of microrna-mediated gene silencing [J]. Nat Rev Genet, 2015, 16(7): 421-433.
|
[18] |
Isaac R, Reis FCG, Ying W, et al. Exosomes as mediators of intercellular crosstalk in metabolism [J]. Cell Metab, 2021, 33(9): 1744-1762.
|
[19] |
Kristensen LS, Andersen M S, Stagsted L V W, et al. The biogenesis, biology and characterization of circular rnas [J]. Nat Rev Genet, 2019, 20(11): 675-691.
|
[20] |
郭磊,吕静,刘继军, 等.肥胖患者内脏脂肪细胞来源的外泌体mirnas表达谱分析 [J]. 国际检验医学杂志, 2018, 39(21): 2604-2609.
|
[21] |
Pescador N, Pérez-Barba M, Ibarra J M, et al. Serum circulating microrna profiling for identification of potential type 2 diabetes and obesity biomarkers [J]. PLoS One, 2013, 8(10): e77251.
|
[22] |
Unamuno X, Gómez-Ambrosi J, Rodríguez A, et al. Adipokine dysregulation and adipose tissue inflammation in human obesity [J]. Eur J Clin Invest, 2018, 48(9): e12997.
|
[23] |
Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ [J]. Nat Rev Endocrinol, 2017, 13(1): 26-35.
|
[24] |
Maligianni I, Yapijakis C, Bacopoulou F, et al. The potential role of exosomes in child and adolescent obesity [J]. Children (Basel), 2021, 8(3).
|
[25] |
Ferrante SC, Nadler EP, Pillai DK, et al. Adipocyte-derived exosomal mirnas: A novel mechanism for obesity-related disease [J]. Pediatr Res, 2015, 77(3): 447-454.
|
[26] |
Kang M, Liu X, Fu Y, et al. Improved systemic metabolism and adipocyte biology in mir-150 knockout mice [J]. Metabolism, 2018, 83: 139-148.
|
[27] |
Zhang H, Guan M, Townsend KL, et al. Microrna-455 regulates brown adipogenesis via a novel hif1an-ampk-pgc1α signaling network [J]. EMBO Rep, 2015, 16(10): 1378-1393.
|
[28] |
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating mirnas regulate gene expression in other tissues [J]. Nature, 2017, 542(7642): 450-455.
|
[29] |
Russo S, Kwiatkowski M, Govorukhina N, et al. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: The importance of metabolites [J]. Front Immunol, 2021, 12: 746151.
|
[30] |
Ji C, Guo X. The clinical potential of circulating micrornas in obesity [J]. Nat Rev Endocrinol, 2019, 15(12): 731-743.
|
[31] |
Appari M, Channon KM, McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes [J]. Antioxid Redox Signal, 2018, 29(3): 297-312.
|
[32] |
Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity [J]. Cell, 2017, 171(2): 372-384.e312.
|
[33] |
Zhang Y, Mei H, Chang X, et al. Adipocyte-derived microvesicles from obese mice induce m1 macrophage phenotype through secreted mir-155 [J]. J Mol Cell Biol, 2016, 8(6): 505-517.
|
[34] |
Wu H, Li X, Shen C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation [J]. Physiol Res, 2020, 69(5): 759-773.
|
[35] |
Liu T, Sun Y C, Cheng P, et al. Adipose tissue macrophage-derived exosomal mir-29a regulates obesity-associated insulin resistance [J]. Biochem Biophys Res Commun, 2019, 515(2): 352-358.
|
[36] |
Song M, Han L, Chen FF, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate m1 macrophage polarization-induced insulin resistance via ptch and pi3k pathways [J]. Cell Physiol Biochem, 2018, 48(4): 1416-1432.
|
[37] |
Fernandez-Twinn D S, Alfaradhi M Z, Martin-Gronert M S, et al. Downregulation of irs-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms [J]. Mol Metab, 2014, 3(3): 325-333.
|
[38] |
de Almeida-Faria J, Duque-Guimarães DE, Ong TP, et al. Maternal obesity during pregnancy leads to adipose tissue er stress in mice via mir-126-mediated reduction in lunapark [J]. Diabetologia, 2021, 64(4): 890-902.
|
[39] |
Cabia B, Andrade S, Carreira MC, et al. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis [J]. Obes Rev, 2016, 17(4): 361-376.
|
[40] |
Rong B, Feng R, Liu C, et al. Reduced delivery of epididymal adipocyte-derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice [J]. J Pineal Res, 2019, 66(4): e12561.
|
[41] |
Hajri T, Zaiou M, Fungwe TV, et al. Epigenetic regulation of peroxisome proliferator-activated receptor gamma mediates high-fat diet-induced non-alcoholic fatty liver disease [J]. Cells, 2021, 10(6) :1355-1355.
|
[42] |
Yu Y, Du H, Wei S, et al. Adipocyte-derived exosomal mir-27a induces insulin resistance in skeletal muscle through repression of pparγ [J]. Theranostics, 2018, 8(8): 2171-2188.
|
[43] |
Long JK, Dai W, Zheng YW, et al. Mir-122 promotes hepatic lipogenesis via inhibiting the lkb1/ampk pathway by targeting sirt1 in non-alcoholic fatty liver disease [J]. Mol Med, 2019, 25(1): 26.
|
[44] |
Cereijo R, Taxerås S D, Piquer-Garcia I, et al. Elevated levels of circulating mir-92a are associated with impaired glucose homeostasis in patients with obesity and correlate with metabolic status after bariatric surgery [J]. Obes Surg, 2020, 30(1): 174-179.
|
[45] |
Wang Z, Zhang J, Zhang S, et al. Mir-30e and mir-92a are related to atherosclerosis by targeting abca1 [J]. Mol Med Rep, 2019, 19(4): 3298-3304.
|
[46] |
Chen Y, Buyel JJ, Hanssen MJ, et al. Exosomal microrna mir-92a concentration in serum reflects human brown fat activity [J]. Nat Commun, 2016, 7: 11420.
|
[47] |
Setyowati Karolina D, Sepramaniam S, Tan HZ, et al. Mir-25 and mir-92a regulate insulin i biosynthesis in rats [J]. RNA Biol, 2013, 10(8): 1365-1378.
|
[48] |
Xiong M, Zhang Q, Hu W, et al. Exosomes from adipose-derived stem cells: The emerging roles and applications in tissue regeneration of plastic and cosmetic surgery [J]. Front Cell Dev Biol, 2020, 8: 574223.
|
[49] |
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing m2 macrophages and beiging in white adipose tissue [J]. Diabetes, 2018, 67(2): 235-247.
|
[50] |
He Q, Wang L, Zhao R, et al. Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy [J]. Stem Cell Res Ther, 2020, 11(1): 223.
|
[51] |
Chen M T, Zhao Y T, Zhou L Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes [J]. Curr Med Sci, 2021, 41(1): 87-93.
|
[52] |
Trajkovski M, Hausser J, Soutschek J, et al. Micrornas 103 and 107 regulate insulin sensitivity [J]. Nature, 2011, 474(7353): 649-653.
|
[53] |
Bae YU, Kim Y, Lee H, et al. Bariatric surgery alters microrna content of circulating exosomes in patients with obesity [J]. Obesity (Silver Spring), 2019, 27(2): 264-271.
|