切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2022, Vol. 08 ›› Issue (02) : 123 -129. doi: 10.3877/cma.j.issn.2095-9605.2022.02.009

综述

外泌体miRNA在肥胖症及其相关疾病发生发展中的作用
艾克拜尔·艾力1, 玉素江·图荪托合提2, 麦麦提艾力·麦麦提明3, 崔剑昱2, 黎鑫2, 克力木·阿不都热依木4,()   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院微创、疝和腹壁外科;新疆维吾尔自治区人民医院普外微创研究所
    2. 830054 乌鲁木齐,新疆医科大学研究生学院
    3. 830001 乌鲁木齐,新疆维吾尔自治区人民医院微创、疝和腹壁外科
    4. 830001 乌鲁木齐,新疆维吾尔自治区人民医院微创、疝和腹壁外科;新疆维吾尔自治区人民医院普外微创研究所;830054 乌鲁木齐,新疆医科大学研究生学院
  • 收稿日期:2022-02-22 出版日期:2022-05-30
  • 通信作者: 克力木·阿不都热依木
  • 基金资助:
    国家自然科学基金项目(82060166); 上海合作组织科技伙伴计划及国际科技合作计划(2020E01014)

The role of exosomalmiRNA in the occurrence and development of obesity and obesity-related disease

Aili Aikebaier·1, Tusuntuoheti Yusujiang·2, Maimaitiming Maimaiti aili·3, Jianyu Cui2, Xin Li2, Abudureyimu Kelimu·4,()   

  1. 1. Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001; Research Institute of Generaland Minimally Invasive Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001
    2. Xinjiang Medical University Graduate School of Medicine, Urumqi 830054, China
    3. Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001
    4. Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001; Research Institute of Generaland Minimally Invasive Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001; Xinjiang Medical University Graduate School of Medicine, Urumqi 830054, China
  • Received:2022-02-22 Published:2022-05-30
  • Corresponding author: Abudureyimu Kelimu·
引用本文:

艾克拜尔·艾力, 玉素江·图荪托合提, 麦麦提艾力·麦麦提明, 崔剑昱, 黎鑫, 克力木·阿不都热依木. 外泌体miRNA在肥胖症及其相关疾病发生发展中的作用[J]. 中华肥胖与代谢病电子杂志, 2022, 08(02): 123-129.

Aili Aikebaier·, Tusuntuoheti Yusujiang·, Maimaitiming Maimaiti aili·, Jianyu Cui, Xin Li, Abudureyimu Kelimu·. The role of exosomalmiRNA in the occurrence and development of obesity and obesity-related disease[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2022, 08(02): 123-129.

外泌体一种具有磷脂双分子层膜结构并包含了多种生物活性物质的细胞外囊泡。在肥胖症中外泌体可能通过调控脂肪组织功能、形成及转化而发挥作用。肥胖症患者外泌体miRNA谱发生变化,从而调节肥胖相关胰岛素抵抗、肝脏和胰腺功能。另外,脂肪干细胞衍生的外泌体可能通过调控脂肪组织巨噬细胞表型改善与肥胖相关的炎症。本文综述了外泌体在肥胖症及其相关疾病发生发展中的作用。

Exosomes are a type of extracellular vesicles (EVs) with phospholipid bilayer membrane structure and contain a variety of biologically active substances. Exosomes may play a role in obesity by regulating adipose tissue function, formation, and transformation. The miRNA profile of exosomes changes in obesity, which can regulate obesity-related insulin resistance, liver and pancreas function. In addition, adipose-derived stem cells (ADSC-Exos) regulate the phenotype of ATMs to improve obesity-related inflammation. This paper reviews the role of exosomes in the occurrence and development of obesity and obesity-related disease.

图1 外泌体通过调控巨噬细胞极化导致胰岛素抵抗
图2 外泌体miRNA调节肥胖相关胰岛素抵抗
[1]
Caballero B. Humans against obesity: Who will win? [J]. Adv Nutr, 2019, 10(suppl_1): S4-S9.
[2]
樊成伟. 肥胖症的研究进展 [J]. 世界最新医学信息文摘, 2021, 21(41): 102-104,107.
[3]
Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity [J]. Immunology, 2018, 155(4): 407-417.
[4]
Zhang B, Yang Y, Xiang L, et al. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes [J]. J Cell Physiol, 2019, 234(10): 16692-16702.
[5]
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J]. Nat Cell Biol, 2019, 21(1): 9-17.
[6]
Pegtel DM, Gould SJ. Exosomes [J]. Annu Rev Biochem, 2019, 88: 487-514.
[7]
Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers [J]. Clin Chim Acta, 2019, 488: 165-171.
[8]
Oses M, Margareto Sanchez J, Portillo M P, et al. Circulating mirnas as biomarkers of obesity and obesity-associated comorbidities in children and adolescents: A systematic review [J]. Nutrients, 2019, 11(12): 2890.
[9]
Castaño C, Kalko S, Novials A, et al. Obesity-associated exosomal mirnas modulate glucose and lipid metabolism in mice [J]. Proc Natl Acad Sci USA, 2018, 115(48): 12158-12163.
[10]
Zhang Y, Bi J, Huang J, et al. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications [J]. Int J Nanomedicine, 2020, 15: 6917-6934.
[11]
Villata S, Canta M, Cauda V. Evs and bioengineering: From cellular products to engineered nanomachines [J]. Int J Mol Sci, 2020, 21(17): 6048.
[12]
Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: Novel mediators of cell communication in metabolic disease [J]. Trends Endocrinol Metab, 2017, 28(1): 3-18.
[13]
Whitford W, Guterstam P. Exosome manufacturing status [J]. Future Med Chem, 2019, 11(10): 1225-1236.
[14]
Yao ZY, Chen WB, Shao SS, et al. Role of exosome-associated microrna in diagnostic and therapeutic applications to metabolic disorders [J]. J Zhejiang Univ Sci B, 2018, 19(3): 183-198.
[15]
Wang W, Zhu N, Yan T, et al. The crosstalk: Exosomes and lipid metabolism [J]. Cell Commun Signal, 2020, 18(1): 119.
[16]
Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: From biogenesis to uptake and intracellular signalling [J]. Cell Commun Signal, 2021, 19(1): 47.
[17]
Jonas S, Izaurralde E. Towards a molecular understanding of microrna-mediated gene silencing [J]. Nat Rev Genet, 2015, 16(7): 421-433.
[18]
Isaac R, Reis FCG, Ying W, et al. Exosomes as mediators of intercellular crosstalk in metabolism [J]. Cell Metab, 2021, 33(9): 1744-1762.
[19]
Kristensen LS, Andersen M S, Stagsted L V W, et al. The biogenesis, biology and characterization of circular rnas [J]. Nat Rev Genet, 2019, 20(11): 675-691.
[20]
郭磊,吕静,刘继军, 等.肥胖患者内脏脂肪细胞来源的外泌体mirnas表达谱分析 [J]. 国际检验医学杂志, 2018, 39(21): 2604-2609.
[21]
Pescador N, Pérez-Barba M, Ibarra J M, et al. Serum circulating microrna profiling for identification of potential type 2 diabetes and obesity biomarkers [J]. PLoS One, 2013, 8(10): e77251.
[22]
Unamuno X, Gómez-Ambrosi J, Rodríguez A, et al. Adipokine dysregulation and adipose tissue inflammation in human obesity [J]. Eur J Clin Invest, 2018, 48(9): e12997.
[23]
Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ [J]. Nat Rev Endocrinol, 2017, 13(1): 26-35.
[24]
Maligianni I, Yapijakis C, Bacopoulou F, et al. The potential role of exosomes in child and adolescent obesity [J]. Children (Basel), 2021, 8(3).
[25]
Ferrante SC, Nadler EP, Pillai DK, et al. Adipocyte-derived exosomal mirnas: A novel mechanism for obesity-related disease [J]. Pediatr Res, 2015, 77(3): 447-454.
[26]
Kang M, Liu X, Fu Y, et al. Improved systemic metabolism and adipocyte biology in mir-150 knockout mice [J]. Metabolism, 2018, 83: 139-148.
[27]
Zhang H, Guan M, Townsend KL, et al. Microrna-455 regulates brown adipogenesis via a novel hif1an-ampk-pgc1α signaling network [J]. EMBO Rep, 2015, 16(10): 1378-1393.
[28]
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating mirnas regulate gene expression in other tissues [J]. Nature, 2017, 542(7642): 450-455.
[29]
Russo S, Kwiatkowski M, Govorukhina N, et al. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: The importance of metabolites [J]. Front Immunol, 2021, 12: 746151.
[30]
Ji C, Guo X. The clinical potential of circulating micrornas in obesity [J]. Nat Rev Endocrinol, 2019, 15(12): 731-743.
[31]
Appari M, Channon KM, McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes [J]. Antioxid Redox Signal, 2018, 29(3): 297-312.
[32]
Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity [J]. Cell, 2017, 171(2): 372-384.e312.
[33]
Zhang Y, Mei H, Chang X, et al. Adipocyte-derived microvesicles from obese mice induce m1 macrophage phenotype through secreted mir-155 [J]. J Mol Cell Biol, 2016, 8(6): 505-517.
[34]
Wu H, Li X, Shen C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation [J]. Physiol Res, 2020, 69(5): 759-773.
[35]
Liu T, Sun Y C, Cheng P, et al. Adipose tissue macrophage-derived exosomal mir-29a regulates obesity-associated insulin resistance [J]. Biochem Biophys Res Commun, 2019, 515(2): 352-358.
[36]
Song M, Han L, Chen FF, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate m1 macrophage polarization-induced insulin resistance via ptch and pi3k pathways [J]. Cell Physiol Biochem, 2018, 48(4): 1416-1432.
[37]
Fernandez-Twinn D S, Alfaradhi M Z, Martin-Gronert M S, et al. Downregulation of irs-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms [J]. Mol Metab, 2014, 3(3): 325-333.
[38]
de Almeida-Faria J, Duque-Guimarães DE, Ong TP, et al. Maternal obesity during pregnancy leads to adipose tissue er stress in mice via mir-126-mediated reduction in lunapark [J]. Diabetologia, 2021, 64(4): 890-902.
[39]
Cabia B, Andrade S, Carreira MC, et al. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis [J]. Obes Rev, 2016, 17(4): 361-376.
[40]
Rong B, Feng R, Liu C, et al. Reduced delivery of epididymal adipocyte-derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice [J]. J Pineal Res, 2019, 66(4): e12561.
[41]
Hajri T, Zaiou M, Fungwe TV, et al. Epigenetic regulation of peroxisome proliferator-activated receptor gamma mediates high-fat diet-induced non-alcoholic fatty liver disease [J]. Cells, 2021, 10(6) :1355-1355.
[42]
Yu Y, Du H, Wei S, et al. Adipocyte-derived exosomal mir-27a induces insulin resistance in skeletal muscle through repression of pparγ [J]. Theranostics, 2018, 8(8): 2171-2188.
[43]
Long JK, Dai W, Zheng YW, et al. Mir-122 promotes hepatic lipogenesis via inhibiting the lkb1/ampk pathway by targeting sirt1 in non-alcoholic fatty liver disease [J]. Mol Med, 2019, 25(1): 26.
[44]
Cereijo R, Taxerås S D, Piquer-Garcia I, et al. Elevated levels of circulating mir-92a are associated with impaired glucose homeostasis in patients with obesity and correlate with metabolic status after bariatric surgery [J]. Obes Surg, 2020, 30(1): 174-179.
[45]
Wang Z, Zhang J, Zhang S, et al. Mir-30e and mir-92a are related to atherosclerosis by targeting abca1 [J]. Mol Med Rep, 2019, 19(4): 3298-3304.
[46]
Chen Y, Buyel JJ, Hanssen MJ, et al. Exosomal microrna mir-92a concentration in serum reflects human brown fat activity [J]. Nat Commun, 2016, 7: 11420.
[47]
Setyowati Karolina D, Sepramaniam S, Tan HZ, et al. Mir-25 and mir-92a regulate insulin i biosynthesis in rats [J]. RNA Biol, 2013, 10(8): 1365-1378.
[48]
Xiong M, Zhang Q, Hu W, et al. Exosomes from adipose-derived stem cells: The emerging roles and applications in tissue regeneration of plastic and cosmetic surgery [J]. Front Cell Dev Biol, 2020, 8: 574223.
[49]
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing m2 macrophages and beiging in white adipose tissue [J]. Diabetes, 2018, 67(2): 235-247.
[50]
He Q, Wang L, Zhao R, et al. Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy [J]. Stem Cell Res Ther, 2020, 11(1): 223.
[51]
Chen M T, Zhao Y T, Zhou L Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes [J]. Curr Med Sci, 2021, 41(1): 87-93.
[52]
Trajkovski M, Hausser J, Soutschek J, et al. Micrornas 103 and 107 regulate insulin sensitivity [J]. Nature, 2011, 474(7353): 649-653.
[53]
Bae YU, Kim Y, Lee H, et al. Bariatric surgery alters microrna content of circulating exosomes in patients with obesity [J]. Obesity (Silver Spring), 2019, 27(2): 264-271.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[4] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[5] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[6] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[7] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[8] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[13] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[14] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[15] 颜宥彤, 赵锐, 万谦益, 张贵祥, 沈弘毅, 程中, 陈亿. GLP-1受体激动剂——司美格鲁肽的应用及安全性[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 88-93.
阅读次数
全文


摘要