切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 46 -51. doi: 10.3877/cma.j.issn.2095-9605.2022.01.008

综述

短链脂肪酸对机体代谢的调控作用
谭肖卓1, 曹冲1, 邵怡凯1, 姚琪远1,()   
  1. 1. 200040 上海,复旦大学附属华山医院普外科
  • 收稿日期:2022-01-09 出版日期:2022-02-28
  • 通信作者: 姚琪远
  • 基金资助:
    国家自然科学基金(81970458)

The effects of short chain fatty acids on host metabolism

XiaoZhuo Tan1, Chong Cao1, YiKai Shao1, QiYuan Yao1,()   

  1. 1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
  • Received:2022-01-09 Published:2022-02-28
  • Corresponding author: QiYuan Yao
引用本文:

谭肖卓, 曹冲, 邵怡凯, 姚琪远. 短链脂肪酸对机体代谢的调控作用[J]. 中华肥胖与代谢病电子杂志, 2022, 08(01): 46-51.

XiaoZhuo Tan, Chong Cao, YiKai Shao, QiYuan Yao. The effects of short chain fatty acids on host metabolism[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2022, 08(01): 46-51.

肠道菌群与人体的健康密切相关,人体为肠道菌群的生长、发育和繁殖提供了稳定的环境,同时肠道菌群也影响着人体的代谢。近年来,随着研究的深入,肠道菌群影响人体代谢的多种途径不断被发现,其中肠道菌群的代谢产物——短链脂肪酸(SCFAs)起着至关重要的作用。短链脂肪酸(SCFAs)可以影响不同组织和器官的生理功能从而调控全身代谢,并且在一些代谢性疾病的治疗上具有广阔的前景。

Growing evidence has revealeda strong association of the gut microbiotawithmetabolic diseases of human beings. Literature has recently proposed an important role for the key metabolites deriving from the gut microbiota, namely short chain fatty acids (SCFAs), to maintain host's metabolic homeostasis. SCFAs regulate systemic metabolism by affecting physiology of different tissues and organs. Moreover, it can be use as therapies for some metabolic diseases with broad prospects. In this Review, we discuss the current findings on how SCFAs contribute to the metabolic health of host.

图1 SCFAs对不同组织器官的代谢调节
[1]
Blaut M. Gut microbiota and energy balance: role in obesity [J]. Proc Nutr soc, 2015, 74(3): 227-234.
[2]
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism [J]. Nature, 2012, 489(7415): 242-249.
[3]
Liu RX, Hong J, Xu XQ, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention [J]. Nat Med, 2017, 23(7): 859-868.
[4]
Yuan J, Chen C, Cui JH, et al. Fatty liver disease caused by high-alcohol-producing klebsiella pneumoniae [J]. Cell Metab, 2019, 30(6): 1172.
[5]
Dalile B, Oudenhove LV, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
[6]
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood [J]. Gut, 1987, 28(10): 1221-1227.
[7]
Miller TL, Wolin MJ. Pathways of acetate,propionate, and butyrate formation by the humanfecal microbial flora [J]. Appl Environ Microbiol, 1996, 62(5): 1589-1592.
[8]
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health [J]. J AOAC Int, 2012, 95(1): 50-60.
[9]
Hu JM, Lin SL, Zheng BD. et al. Short chain fatty acids in control of energy metabolism [J]. Crit Rev Food Sci Nutr, 2018, 58(8):1243-1249.
[10]
Taoufik N, Andrew WM, Miran AAR, et al. Characterization of butyrate transport across the luminal membranes of equine large intestine [J]. Exp Physiol, 2014, 99(10): 1335-1347.
[11]
Yu X, Wu ZW, Song ZG, et al. Single-anastomosis duodenal jejunal bypass improve glucose metabolism by regulating gut microbiota and short-chain fatty acids in goto-kakisaki rats [J]. Front Microbiol, 2020, 11: 273.
[12]
Bloemen JG, Venema K, Marcel C, et al. Short chain fatty acids exchange across the gut and liver in humans measured atsurgery [J]. Clin Nutr, 2009, 28(6): 657-661.
[13]
Kekuda R, Manoharan P, Baseler W, et al. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. digest [J]. Dis Sci, 2013, 58(3): 660-667.
[14]
Ardawi M, Newsholme E. Fuel utilization in colonocytes of the rat [J]. Biochem J, 1985, 231(3): 713-719.
[15]
Besten GD, Lange K, Havinga R,et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids [J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(12): G900-910.
[16]
Le PE, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation [J]. J Biol Chem, 2003 Jul 11, 278(28): 25481-25489.
[17]
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids [J]. J Biol Chem, 2003, 278(13): 11312-11319.
[18]
Karaki S, Tazoe H, Hayash H, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon [J]. J Mol Histol, 2008, 39(2): 135-142.
[19]
Maslowski KM, Vieira AT, Nget A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 [J]. Nature, 2009, 461(7268): 1282-1286.
[20]
Liu F, Fu Yucai, Wei Chiju, et al. The expression of GPR109A, NF-κB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes [J]. Ann Clin Lab Sci, 2014, 47(5): 556-562.
[21]
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation [J]. Proc Natl Acad Sci USA, 2013, 110(11): 4410-4415.
[22]
Marks PA, Richon VM, Miller T, et al. Histone deacetylase inhibitors [J]. Adv Cancer Res, 2004, 91: 137-168.
[23]
Waldecker M, Kautenburger T, Daumann H, et al. Inhibition of histone-deacetylase activity by short- chain fatty acids and some polyphenol metabolites formed in the colon [J]. J Nutr Biochem, 2008, 19(9): 587-593.
[24]
Bonaz B, Bazin T, Pellissier S, et al. The vagus nerve at the interface of the microbiota-gut-brain axis [J]. Front. Neurosci, 2018, 12: 49.
[25]
Correa-Oliveira R, Fachi JL, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids [J]. Clin T ransl Immunol, 2016, 5(4): e73.
[26]
Sahuri-Arisoylu M, Brody LP, Parkinson JR, et al. Reprogramming of hepatic fat accumulation and "browning" of adipose tissue by the short-chain fatty acid acetate [J]. Int J Obes (Lond), 2016, 40(6): 955-963.
[27]
Cui YZ, Wang QJ, Chang RX, et al. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota [J]. J Agric Food Chem, 2019, 67(10): 2754-2762.
[28]
Peng L, Li Z, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. J Nutr, 2009, 139(9): 1619-1625.
[29]
Kelly CJ, Zheng Leon, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function [J]. Cell Host Microbe, 2015, 17(5): 662-671.
[30]
Pelaseyed T, Bergström JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system [J]. Immunol Rev, 2014, 260(1): 8-20.
[31]
Barcelo A, Claustre J, Moro F,et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon [J]. Gut, 2000, 46(2): 218-224.
[32]
Gaudier E, Rival M, Buisine MP, et al. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon [J]. Physiol Res, 2009, 58(1): 111-119.
[33]
Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents [J]. Int J Obes (Lond), 2015, 39(3): 424-429.
[34]
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults [J]. Gut, 2015, 64(11): 1744-1754.
[35]
Fukumori R, Sugino T, Hasegawa Y, et al. Plasma ghrelin concentration is decreased by short chain fatty acids in wethers [J]. Domest. Anim Endocrinol, 2011, 41(1): 50-55.
[36]
Reigstad CS, Salmonson CE, Rainey JF, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells [J]. FASEB J, 2015, 29(4): 1395-1403.
[37]
Vadder FD, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut- brain neural circuits [J].Cell, 2014, 156(1-2): 84-96.
[38]
Vily-Petit J, Soty-Roca M, Silva M, et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease [J]. Gut, 2020, 69(12): 2193-202.
[39]
Hong Y, Sheng LL, Zhong J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice [J]. Gut Microbes, 2021, 13(1): 1-20.
[40]
Haghikia A, Zimmermann F, Schumann P, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism [J]. Eur Heart J, 2022, 43(6): 518-533.
[41]
Fuller M, Priyadarshini M, Gibbons SM, et al. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis [J]. Am J Physiol Endocrinol Metab, 2015, 309(10): e840-851.
[42]
Gao ZG, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice [J]. Diabetes, 2009, 58(7): 1509-1517.
[43]
Ge H, Li XF, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids [J]. Endocrinology, 2008, 149(9): 4519-4526.
[44]
Lee S, Hossner K. Coordinate regulation of ovine adipose tissue gene expression by propionate [J]. J Anim Sci, 2002, 80(11): 2840-2849.
[45]
Soliman M, Kimura K, Ahmed M, et al. Inverse regulation of leptin mRNA expression by short-and long-chain fatty acids in cultured bovine adipocytes [J]. Domest Anim Endocrinol, 2007, 33(4): 400-409.
[46]
Yamashita H, Maruta H, Jozuka M, et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats [J]. Biosci Biotechnol Biochem, 2009, 73(3): 570-576.
[47]
Tang WHW, Kitai T, Hazen SL, et al. Gut microbiota in cardiovascular health and disease [J].Circ Res, 2017, 120(7): 1183-1196.
[48]
Reynolds A, Mann J, Cummings J, et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses [J]. Lancet, 2019, 393(10170): 434-445.
[49]
Kaye DM, Shihata WA, Jama HA, et al.Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease [J]. Circulation, 2020, 141(17): 1393-1403.
[50]
Deng MJ, Qu F, Chen L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD [J]. J Endocrinol, 2020, 245(3): 425-437.
[51]
Malkova D, Polyviou T, Rizou E, et al. Moderate intensity exercise training combined with inulin-propionate ester supplementation increases whole body resting fat oxidation in overweight women [J]. Metabolism, 2020, 104: 154043.
[52]
Chambers ES, Byrne CS, Morrison DJ, et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial [J]. Gut, 2019, 68(8): 1430-1438.
[53]
Ren MX, Zhang HY, Qi JD, et al.An almond-based low carbohydrate diet improves depression and glycometabolism in patients with type 2 diabetes through modulating gut microbiota and GLP-1: a randomized controlled trial [J]. Nutrients, 2020, 12(10): 3036.
[54]
Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice [J]. Circulation, 2017, 135(10): 964-977.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[3] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[4] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[5] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[6] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[7] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[8] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[9] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[10] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[11] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[14] 唐小久, 胡曼, 许必君, 肖亚. 肥胖合并胃食管反流病患者严重程度与其焦虑抑郁及营养状态的相关性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 360-364.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要