[1] |
Blaut M. Gut microbiota and energy balance: role in obesity [J]. Proc Nutr soc, 2015, 74(3): 227-234.
|
[2] |
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism [J]. Nature, 2012, 489(7415): 242-249.
|
[3] |
Liu RX, Hong J, Xu XQ, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention [J]. Nat Med, 2017, 23(7): 859-868.
|
[4] |
Yuan J, Chen C, Cui JH, et al. Fatty liver disease caused by high-alcohol-producing klebsiella pneumoniae [J]. Cell Metab, 2019, 30(6): 1172.
|
[5] |
Dalile B, Oudenhove LV, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
|
[6] |
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood [J]. Gut, 1987, 28(10): 1221-1227.
|
[7] |
Miller TL, Wolin MJ. Pathways of acetate,propionate, and butyrate formation by the humanfecal microbial flora [J]. Appl Environ Microbiol, 1996, 62(5): 1589-1592.
|
[8] |
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health [J]. J AOAC Int, 2012, 95(1): 50-60.
|
[9] |
Hu JM, Lin SL, Zheng BD. et al. Short chain fatty acids in control of energy metabolism [J]. Crit Rev Food Sci Nutr, 2018, 58(8):1243-1249.
|
[10] |
Taoufik N, Andrew WM, Miran AAR, et al. Characterization of butyrate transport across the luminal membranes of equine large intestine [J]. Exp Physiol, 2014, 99(10): 1335-1347.
|
[11] |
Yu X, Wu ZW, Song ZG, et al. Single-anastomosis duodenal jejunal bypass improve glucose metabolism by regulating gut microbiota and short-chain fatty acids in goto-kakisaki rats [J]. Front Microbiol, 2020, 11: 273.
|
[12] |
Bloemen JG, Venema K, Marcel C, et al. Short chain fatty acids exchange across the gut and liver in humans measured atsurgery [J]. Clin Nutr, 2009, 28(6): 657-661.
|
[13] |
Kekuda R, Manoharan P, Baseler W, et al. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. digest [J]. Dis Sci, 2013, 58(3): 660-667.
|
[14] |
Ardawi M, Newsholme E. Fuel utilization in colonocytes of the rat [J]. Biochem J, 1985, 231(3): 713-719.
|
[15] |
Besten GD, Lange K, Havinga R,et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids [J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(12): G900-910.
|
[16] |
Le PE, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation [J]. J Biol Chem, 2003 Jul 11, 278(28): 25481-25489.
|
[17] |
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids [J]. J Biol Chem, 2003, 278(13): 11312-11319.
|
[18] |
Karaki S, Tazoe H, Hayash H, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon [J]. J Mol Histol, 2008, 39(2): 135-142.
|
[19] |
Maslowski KM, Vieira AT, Nget A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 [J]. Nature, 2009, 461(7268): 1282-1286.
|
[20] |
Liu F, Fu Yucai, Wei Chiju, et al. The expression of GPR109A, NF-κB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes [J]. Ann Clin Lab Sci, 2014, 47(5): 556-562.
|
[21] |
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation [J]. Proc Natl Acad Sci USA, 2013, 110(11): 4410-4415.
|
[22] |
Marks PA, Richon VM, Miller T, et al. Histone deacetylase inhibitors [J]. Adv Cancer Res, 2004, 91: 137-168.
|
[23] |
Waldecker M, Kautenburger T, Daumann H, et al. Inhibition of histone-deacetylase activity by short- chain fatty acids and some polyphenol metabolites formed in the colon [J]. J Nutr Biochem, 2008, 19(9): 587-593.
|
[24] |
Bonaz B, Bazin T, Pellissier S, et al. The vagus nerve at the interface of the microbiota-gut-brain axis [J]. Front. Neurosci, 2018, 12: 49.
|
[25] |
Correa-Oliveira R, Fachi JL, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids [J]. Clin T ransl Immunol, 2016, 5(4): e73.
|
[26] |
Sahuri-Arisoylu M, Brody LP, Parkinson JR, et al. Reprogramming of hepatic fat accumulation and "browning" of adipose tissue by the short-chain fatty acid acetate [J]. Int J Obes (Lond), 2016, 40(6): 955-963.
|
[27] |
Cui YZ, Wang QJ, Chang RX, et al. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota [J]. J Agric Food Chem, 2019, 67(10): 2754-2762.
|
[28] |
Peng L, Li Z, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. J Nutr, 2009, 139(9): 1619-1625.
|
[29] |
Kelly CJ, Zheng Leon, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function [J]. Cell Host Microbe, 2015, 17(5): 662-671.
|
[30] |
Pelaseyed T, Bergström JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system [J]. Immunol Rev, 2014, 260(1): 8-20.
|
[31] |
Barcelo A, Claustre J, Moro F,et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon [J]. Gut, 2000, 46(2): 218-224.
|
[32] |
Gaudier E, Rival M, Buisine MP, et al. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon [J]. Physiol Res, 2009, 58(1): 111-119.
|
[33] |
Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents [J]. Int J Obes (Lond), 2015, 39(3): 424-429.
|
[34] |
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults [J]. Gut, 2015, 64(11): 1744-1754.
|
[35] |
Fukumori R, Sugino T, Hasegawa Y, et al. Plasma ghrelin concentration is decreased by short chain fatty acids in wethers [J]. Domest. Anim Endocrinol, 2011, 41(1): 50-55.
|
[36] |
Reigstad CS, Salmonson CE, Rainey JF, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells [J]. FASEB J, 2015, 29(4): 1395-1403.
|
[37] |
Vadder FD, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut- brain neural circuits [J].Cell, 2014, 156(1-2): 84-96.
|
[38] |
Vily-Petit J, Soty-Roca M, Silva M, et al. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease [J]. Gut, 2020, 69(12): 2193-202.
|
[39] |
Hong Y, Sheng LL, Zhong J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice [J]. Gut Microbes, 2021, 13(1): 1-20.
|
[40] |
Haghikia A, Zimmermann F, Schumann P, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism [J]. Eur Heart J, 2022, 43(6): 518-533.
|
[41] |
Fuller M, Priyadarshini M, Gibbons SM, et al. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis [J]. Am J Physiol Endocrinol Metab, 2015, 309(10): e840-851.
|
[42] |
Gao ZG, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice [J]. Diabetes, 2009, 58(7): 1509-1517.
|
[43] |
Ge H, Li XF, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids [J]. Endocrinology, 2008, 149(9): 4519-4526.
|
[44] |
Lee S, Hossner K. Coordinate regulation of ovine adipose tissue gene expression by propionate [J]. J Anim Sci, 2002, 80(11): 2840-2849.
|
[45] |
Soliman M, Kimura K, Ahmed M, et al. Inverse regulation of leptin mRNA expression by short-and long-chain fatty acids in cultured bovine adipocytes [J]. Domest Anim Endocrinol, 2007, 33(4): 400-409.
|
[46] |
Yamashita H, Maruta H, Jozuka M, et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats [J]. Biosci Biotechnol Biochem, 2009, 73(3): 570-576.
|
[47] |
Tang WHW, Kitai T, Hazen SL, et al. Gut microbiota in cardiovascular health and disease [J].Circ Res, 2017, 120(7): 1183-1196.
|
[48] |
Reynolds A, Mann J, Cummings J, et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses [J]. Lancet, 2019, 393(10170): 434-445.
|
[49] |
Kaye DM, Shihata WA, Jama HA, et al.Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease [J]. Circulation, 2020, 141(17): 1393-1403.
|
[50] |
Deng MJ, Qu F, Chen L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD [J]. J Endocrinol, 2020, 245(3): 425-437.
|
[51] |
Malkova D, Polyviou T, Rizou E, et al. Moderate intensity exercise training combined with inulin-propionate ester supplementation increases whole body resting fat oxidation in overweight women [J]. Metabolism, 2020, 104: 154043.
|
[52] |
Chambers ES, Byrne CS, Morrison DJ, et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial [J]. Gut, 2019, 68(8): 1430-1438.
|
[53] |
Ren MX, Zhang HY, Qi JD, et al.An almond-based low carbohydrate diet improves depression and glycometabolism in patients with type 2 diabetes through modulating gut microbiota and GLP-1: a randomized controlled trial [J]. Nutrients, 2020, 12(10): 3036.
|
[54] |
Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice [J]. Circulation, 2017, 135(10): 964-977.
|