切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 100 -103. doi: 10.3877/cma.j.issn.2095-9605.2019.02.007

所属专题: 文献

综述

维生素D在2型糖尿病周围神经病变中的作用机制
杨晓瑞1, 向茜1,()   
  1. 1. 661000 个旧,昆明医科大学第五附属医院(红河州滇南中心医院)内分泌科
  • 收稿日期:2019-03-04 出版日期:2019-05-30
  • 通信作者: 向茜
  • 基金资助:
    2018年度云南省教育厅科学研究基金项目(研究生类)(2018Y060)

Mechanism of vitamin D in peripheral neuropathy of type 2 diabetes mellitus

Xiaorui Yang1, Xi Xiang1()   

  • Received:2019-03-04 Published:2019-05-30
  • Corresponding author: Xi Xiang
引用本文:

杨晓瑞, 向茜. 维生素D在2型糖尿病周围神经病变中的作用机制[J]. 中华肥胖与代谢病电子杂志, 2019, 05(02): 100-103.

Xiaorui Yang, Xi Xiang. Mechanism of vitamin D in peripheral neuropathy of type 2 diabetes mellitus[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(02): 100-103.

[1]
王莉霞. 糖尿病周围神经病变的发病机制概述[J]. 医药前沿, 2016, 6(24): 6-7.
[2]
Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy[J]. Diabetes, 2012, 28: 8-14.
[3]
Herrmann M, Sullivan DR, Veillard AS, et al. Serum 25-Hydroxyvitamin D: A Predictor of Macrovascular and Microvascular Complications in Patients With Type 2 Diabetes[J]. Diabetes Care, 2015, 38(3): 521-528.
[4]
Garcion E, Wionbarbot N, Monteromenei CN, et al. New clues about vitamin D functions in the nervous system[J]. Trends in Endocrinology and Metabolism, 2002, 13(3): 100-105.
[5]
Lv WS, Zhao WJ, Gong SL, et al. Serum 25-hydroxyvitamin D levels and peripheral neuropathy in patients with type 2 diabetes: a systematic review and meta-analysis[J]. Journal of Endocrinological Investigation, 2015, 38(5): 513-518.
[6]
Soderstrom LH, Johnson SP, Diaz VA, et al. Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001–2004 NHANES[J]. Diabetic Medicine, 2012, 29(1): 50-55.
[7]
Maser RE, Lenhard MJ, Pohlig RT. Vitamin D Insufficiency is Associated with Reduced Parasympathetic Nerve Fiber Function in Type 2 Diabetes[J]. Endocrine Practice, 2015, 21(2): 174-181.
[8]
Maestro B, Molero S, Bajo S, et al. Transcriptional activation of the human insulin receptor gene by 1, 25-dihydroxyvitamin D3[J]. Cell Biochemistry and Function, 2002, 20(3): 227-232.
[9]
Mirhosseini N, Vatanparast H, Mazidi M, et al. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients: A Meta-Analysis[J]. The Journal of Clinical Endocrinology & Metabolism, 2017, 102(9): 3097-3110.
[10]
Grammatiki M, Rapti E, Karras S, et al. Vitamin D and diabetes mellitus: Causal or casual association?[J]. Reviews in Endocrine and Metabolic Disorders, 2017, 18(2): 227-241.
[11]
Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor[J]. The Faseb Journal, 2003, 17(3): 509-511.
[12]
Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle[J]. Proceedings of the Nutrition Society, 2004, 63(2): 275-278.
[13]
Sooy K, Schermerhorn T, Noda M, et al. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines[J]. Journal of Biological Chemistry, 1999, 274(48): 34343-34349.
[14]
Rabinovitch A, Suarez-Pinzon WL, Sooy K, et al. Expression of calbindin-D(28k) in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis[J]. Endocrinology, 2001, 142(8): 3649-3655.
[15]
Al-Khalidi B, Rotondi MA, Kimball SM, et al. Clinical utility of serum 25-hydroxyvitamin D in the diagnosis of insulin resistance and estimation of optimal 25-hydroxyvitamin D in U.S. adults[J]. Diabetes Research and Clinical Practice, 2017, 134(1): 80-90.
[16]
Jehle S, Lardi A, Felix B, et al. Effect of large doses of parenteral vitamin D on glycaemic control and calcium/phosphate metabolism in patients with stable type 2 diabetes mellitus: a randomised, placebo-controlled, prospective pilot study[J]. Swiss Medical Weekly, 2014, 144: w13942.
[17]
Wimalawansa SJ. Associations of vitamin D with insulin resistance,obesity,type 2 diabetes,and metabolic syndrome[J]. Journal of Steroid Biochemistry and Molecular Biology, 2018, 175: 177-189.
[18]
Ahmadieh H, Azar ST, Lakkis N, et al. Hypovitaminosis D in Patients with Type 2 Diabetes Mellitus: A Relation to Disease Control and Complications[J]. Isrn Endocrinol, 2013, 2013: 1-7.
[19]
Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the Roles of PPAR in Energy Metabolism and Vascular Homeostasis[J]. Journal of Clinical Investigation, 2006, 116(3): 571-580.
[20]
Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism[J]. Trends in Pharmacological Sciences, 2004, 25(6): 331-336.
[21]
Ning Conghua, Liu Lina, Lv Guodong, et al. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats[J]. Lipids in Health and Disease, 2015, 14(1): 1-9.
[22]
Lee S, Lee DK, Choi E, et al. Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes[J]. Molecular Endocrinology, 2005, 19(2): 399-408.
[23]
Al-hazmi AS, Almehmadi MM, Albogami SM, et al. Vitamin D receptor gene polymorphisms as a risk factor for obesity in Saudi men[J]. Electronic Physician, 2017, 9(10): 5427-5433.
[24]
Lagunova Z, Porojnicu AC, Lindberg FA, et al. Vitamin D status in Norwegian children and adolescents with excess body weight[J]. Pediatric Diabetes, 2011, 12(2): 120-126.
[25]
Chung S, Ho C, Lam K, et al. Oxidative stress and diabetic complications[J]. Circulation Research, 2004, 107(9): 1058-1070.
[26]
Pantalone KM, Misrahebert AD, Hobbs TM, et al. Impact of Glycemic Control on the Diabetes Complications Severity Index Score and Development of Complications in People with Newly-diagnosed Type 2 Diabetes[J]. Journal of Diabetes, 2018, 10(3): 192-199.
[27]
Santos GC, Zeidler JD, Pérez-Valencia JA, et al. Metabolomic Analysis Reveals Vitamin D-induced Decrease in Polyol Pathway and Subtle Modulation of Glycolysis in HEK293T Cells[J]. Scientific Reports, 2017, 7(1): 9510-9523.
[28]
Chang JM, Kuo MC, Kuo HT, et al. 1-alpha, 25-Dihydroxyvitamin D3 regulates inducible nitric oxide synthase messenger RNA expression and nitric oxide release in macrophage-like RAW 264.7 cells[J]. Journal of Laboratory and Clinical Medicine, 2004, 143(1): 14-22.
[29]
Garcion E, Sindji L, Leblondel G, et al. 1, 25-Dihydroxyvitamin D3 Regulates the Synthesis of-Glutamyl Transpeptidase and Glutathione Levels in Rat Primary Astrocytes[J]. Journal of Neurochemistry, 1999, 73(2): 859-866.
[30]
Anandabaskar N, Selvarajan S, Dkhar SA, et al. Effect of Vitamin D supplementation on vascular functions and oxidative stress in type 2 diabetic patients with Vitamin D deficiency[J]. Indian Journal of Endocrinology and Metabolism, 2017, 21(4): 555-563.
[31]
Cohen-Lahav M, Shany S, Tobvin D, et al. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels[J]. Nephrology Dialysis Transplantation, 2006, 21(4): 889-897.
[32]
Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance,obesity and diabetes[J]. Trends in Immunology, 2004, 25(1): 4-7.
[33]
Wolden-Kirk H, Overbergh L, Christesen HT, et al. Vitamin D and diabetes: its importance for beta cell and immune function[J]. Molecular and Cellular Endocrinology, 2011, 347(1): 106-120.
[34]
Christakos S, Dhawan P, Benn B, et al. Vitamin D: Molecular Mechanism of Action[J]. Annals of the New York Academy of Sciences, 2007, 1116(1): 340-348.
[35]
Borges AC, Feres T, Vianna LM, et al. Recovery of impaired K+ channels in mesenteric arteries from spontaneously hypertensive rats by prolonged treatment with cholecalciferol[J]. British Journal of Pharmacology, 1999, 127(3): 772-778.
[36]
Ginsberg HN. Insulin resistance and cardiovascular disease[J]. Journal of Clinical Investigation, 2000, 14(2): 453-458.
[37]
Deb DK, Chen Yunzi, Zhang Zhongyi, et al. 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced angiotensinogen expression in kidney cells by blocking the NF-κB pathway[J]. American Journal of Physiology-Renal Physiology, 2009, 296(5): 1212-1218.
[38]
Suzuki T, Sekido H, Kato N, et al. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway[J]. Journal of Neurochemistry, 2004, 91(6): 1430-1438.
[39]
Brewer LD, Thibault V, Chen KC, et al. Vitamin D Hormone Confers Neuroprotection in Parallel with Downregulation of L-Type Calcium Channel Expression in Hippocampal Neurons[J]. The Journal of Neuroscience, 2001, 21(1): 98-108.
[40]
Mascarenhas R, Mobarhan S. Hypovitaminosis D-induced Pain[J]. Nutrition Reviews, 2004, 62(9): 354-359.
[41]
Neveu I, Naveilhan P, Baudet C, et al. 1, 25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes[J]. Neuroreport, 1994, 6(1): 124-126.
[42]
Chabas JF, Stephan D, Marqueste T, et al. Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury[J]. PLoS One, 2013, 8(5): e65034.
[43]
Shehab D, Al-Jarallah K, Abdella N, et al. Prospective Evaluation of the Effect of Short-Term Oral Vitamin D Supplementation on Peripheral Neuropathy in Type 2 Diabetes Mellitus[J]. Medical Principles and Practice, 2015, 24(3): 250-256.
[44]
Premkumar LS, Pabbidi RM. Diabetic Peripheral Neuropathy: Role of Reactive Oxygen and Nitrogen Species[J]. Cell Biochemistry and Biophysics, 2013, 67(2): 373-383.
[45]
Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision[J]. European Journal of Neurology, 2010, 17(9): 1113-e88.
[46]
Calcutt N, Jolivalt C, Fernyhough P. Growth Factors as Therapeutics for Diabetic Neuropathy[J]. Current Drug Targets, 2008, 9(1): 47-59.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[3] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[4] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[5] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[6] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[7] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[8] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[9] 陆文琪, 赵艳茹, 李焕娣, 樊欣娜, 王佳, 李萍. 2型糖尿病患者血清SMAD2和SOX6表达及其与蛋白尿的关系[J]. 中华肾病研究电子杂志, 2024, 13(03): 145-151.
[10] 房桂彬, 肖进, 傅光涛, 郑秋坚. 老年髋部骨折患者术后1年行走能力的影响因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 273-280.
[11] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[12] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[13] 孙秀芹, 高美娟, 张琼阁, 吕凯敏, 王宏宇. 京西地区无心血管病史2型糖尿病中老年人群患心血管疾病的危险因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(03): 245-252.
[14] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[15] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
阅读次数
全文


摘要