切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 100 -103. doi: 10.3877/cma.j.issn.2095-9605.2019.02.007

所属专题: 文献

综述

维生素D在2型糖尿病周围神经病变中的作用机制
杨晓瑞1, 向茜1,()   
  1. 1. 661000 个旧,昆明医科大学第五附属医院(红河州滇南中心医院)内分泌科
  • 收稿日期:2019-03-04 出版日期:2019-05-30
  • 通信作者: 向茜
  • 基金资助:
    2018年度云南省教育厅科学研究基金项目(研究生类)(2018Y060)

Mechanism of vitamin D in peripheral neuropathy of type 2 diabetes mellitus

Xiaorui Yang1, Xi Xiang1()   

  • Received:2019-03-04 Published:2019-05-30
  • Corresponding author: Xi Xiang
引用本文:

杨晓瑞, 向茜. 维生素D在2型糖尿病周围神经病变中的作用机制[J]. 中华肥胖与代谢病电子杂志, 2019, 05(02): 100-103.

Xiaorui Yang, Xi Xiang. Mechanism of vitamin D in peripheral neuropathy of type 2 diabetes mellitus[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(02): 100-103.

[1]
王莉霞. 糖尿病周围神经病变的发病机制概述[J]. 医药前沿, 2016, 6(24): 6-7.
[2]
Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy[J]. Diabetes, 2012, 28: 8-14.
[3]
Herrmann M, Sullivan DR, Veillard AS, et al. Serum 25-Hydroxyvitamin D: A Predictor of Macrovascular and Microvascular Complications in Patients With Type 2 Diabetes[J]. Diabetes Care, 2015, 38(3): 521-528.
[4]
Garcion E, Wionbarbot N, Monteromenei CN, et al. New clues about vitamin D functions in the nervous system[J]. Trends in Endocrinology and Metabolism, 2002, 13(3): 100-105.
[5]
Lv WS, Zhao WJ, Gong SL, et al. Serum 25-hydroxyvitamin D levels and peripheral neuropathy in patients with type 2 diabetes: a systematic review and meta-analysis[J]. Journal of Endocrinological Investigation, 2015, 38(5): 513-518.
[6]
Soderstrom LH, Johnson SP, Diaz VA, et al. Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001–2004 NHANES[J]. Diabetic Medicine, 2012, 29(1): 50-55.
[7]
Maser RE, Lenhard MJ, Pohlig RT. Vitamin D Insufficiency is Associated with Reduced Parasympathetic Nerve Fiber Function in Type 2 Diabetes[J]. Endocrine Practice, 2015, 21(2): 174-181.
[8]
Maestro B, Molero S, Bajo S, et al. Transcriptional activation of the human insulin receptor gene by 1, 25-dihydroxyvitamin D3[J]. Cell Biochemistry and Function, 2002, 20(3): 227-232.
[9]
Mirhosseini N, Vatanparast H, Mazidi M, et al. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients: A Meta-Analysis[J]. The Journal of Clinical Endocrinology & Metabolism, 2017, 102(9): 3097-3110.
[10]
Grammatiki M, Rapti E, Karras S, et al. Vitamin D and diabetes mellitus: Causal or casual association?[J]. Reviews in Endocrine and Metabolic Disorders, 2017, 18(2): 227-241.
[11]
Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor[J]. The Faseb Journal, 2003, 17(3): 509-511.
[12]
Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle[J]. Proceedings of the Nutrition Society, 2004, 63(2): 275-278.
[13]
Sooy K, Schermerhorn T, Noda M, et al. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines[J]. Journal of Biological Chemistry, 1999, 274(48): 34343-34349.
[14]
Rabinovitch A, Suarez-Pinzon WL, Sooy K, et al. Expression of calbindin-D(28k) in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis[J]. Endocrinology, 2001, 142(8): 3649-3655.
[15]
Al-Khalidi B, Rotondi MA, Kimball SM, et al. Clinical utility of serum 25-hydroxyvitamin D in the diagnosis of insulin resistance and estimation of optimal 25-hydroxyvitamin D in U.S. adults[J]. Diabetes Research and Clinical Practice, 2017, 134(1): 80-90.
[16]
Jehle S, Lardi A, Felix B, et al. Effect of large doses of parenteral vitamin D on glycaemic control and calcium/phosphate metabolism in patients with stable type 2 diabetes mellitus: a randomised, placebo-controlled, prospective pilot study[J]. Swiss Medical Weekly, 2014, 144: w13942.
[17]
Wimalawansa SJ. Associations of vitamin D with insulin resistance,obesity,type 2 diabetes,and metabolic syndrome[J]. Journal of Steroid Biochemistry and Molecular Biology, 2018, 175: 177-189.
[18]
Ahmadieh H, Azar ST, Lakkis N, et al. Hypovitaminosis D in Patients with Type 2 Diabetes Mellitus: A Relation to Disease Control and Complications[J]. Isrn Endocrinol, 2013, 2013: 1-7.
[19]
Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the Roles of PPAR in Energy Metabolism and Vascular Homeostasis[J]. Journal of Clinical Investigation, 2006, 116(3): 571-580.
[20]
Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism[J]. Trends in Pharmacological Sciences, 2004, 25(6): 331-336.
[21]
Ning Conghua, Liu Lina, Lv Guodong, et al. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats[J]. Lipids in Health and Disease, 2015, 14(1): 1-9.
[22]
Lee S, Lee DK, Choi E, et al. Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes[J]. Molecular Endocrinology, 2005, 19(2): 399-408.
[23]
Al-hazmi AS, Almehmadi MM, Albogami SM, et al. Vitamin D receptor gene polymorphisms as a risk factor for obesity in Saudi men[J]. Electronic Physician, 2017, 9(10): 5427-5433.
[24]
Lagunova Z, Porojnicu AC, Lindberg FA, et al. Vitamin D status in Norwegian children and adolescents with excess body weight[J]. Pediatric Diabetes, 2011, 12(2): 120-126.
[25]
Chung S, Ho C, Lam K, et al. Oxidative stress and diabetic complications[J]. Circulation Research, 2004, 107(9): 1058-1070.
[26]
Pantalone KM, Misrahebert AD, Hobbs TM, et al. Impact of Glycemic Control on the Diabetes Complications Severity Index Score and Development of Complications in People with Newly-diagnosed Type 2 Diabetes[J]. Journal of Diabetes, 2018, 10(3): 192-199.
[27]
Santos GC, Zeidler JD, Pérez-Valencia JA, et al. Metabolomic Analysis Reveals Vitamin D-induced Decrease in Polyol Pathway and Subtle Modulation of Glycolysis in HEK293T Cells[J]. Scientific Reports, 2017, 7(1): 9510-9523.
[28]
Chang JM, Kuo MC, Kuo HT, et al. 1-alpha, 25-Dihydroxyvitamin D3 regulates inducible nitric oxide synthase messenger RNA expression and nitric oxide release in macrophage-like RAW 264.7 cells[J]. Journal of Laboratory and Clinical Medicine, 2004, 143(1): 14-22.
[29]
Garcion E, Sindji L, Leblondel G, et al. 1, 25-Dihydroxyvitamin D3 Regulates the Synthesis of-Glutamyl Transpeptidase and Glutathione Levels in Rat Primary Astrocytes[J]. Journal of Neurochemistry, 1999, 73(2): 859-866.
[30]
Anandabaskar N, Selvarajan S, Dkhar SA, et al. Effect of Vitamin D supplementation on vascular functions and oxidative stress in type 2 diabetic patients with Vitamin D deficiency[J]. Indian Journal of Endocrinology and Metabolism, 2017, 21(4): 555-563.
[31]
Cohen-Lahav M, Shany S, Tobvin D, et al. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels[J]. Nephrology Dialysis Transplantation, 2006, 21(4): 889-897.
[32]
Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance,obesity and diabetes[J]. Trends in Immunology, 2004, 25(1): 4-7.
[33]
Wolden-Kirk H, Overbergh L, Christesen HT, et al. Vitamin D and diabetes: its importance for beta cell and immune function[J]. Molecular and Cellular Endocrinology, 2011, 347(1): 106-120.
[34]
Christakos S, Dhawan P, Benn B, et al. Vitamin D: Molecular Mechanism of Action[J]. Annals of the New York Academy of Sciences, 2007, 1116(1): 340-348.
[35]
Borges AC, Feres T, Vianna LM, et al. Recovery of impaired K+ channels in mesenteric arteries from spontaneously hypertensive rats by prolonged treatment with cholecalciferol[J]. British Journal of Pharmacology, 1999, 127(3): 772-778.
[36]
Ginsberg HN. Insulin resistance and cardiovascular disease[J]. Journal of Clinical Investigation, 2000, 14(2): 453-458.
[37]
Deb DK, Chen Yunzi, Zhang Zhongyi, et al. 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced angiotensinogen expression in kidney cells by blocking the NF-κB pathway[J]. American Journal of Physiology-Renal Physiology, 2009, 296(5): 1212-1218.
[38]
Suzuki T, Sekido H, Kato N, et al. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway[J]. Journal of Neurochemistry, 2004, 91(6): 1430-1438.
[39]
Brewer LD, Thibault V, Chen KC, et al. Vitamin D Hormone Confers Neuroprotection in Parallel with Downregulation of L-Type Calcium Channel Expression in Hippocampal Neurons[J]. The Journal of Neuroscience, 2001, 21(1): 98-108.
[40]
Mascarenhas R, Mobarhan S. Hypovitaminosis D-induced Pain[J]. Nutrition Reviews, 2004, 62(9): 354-359.
[41]
Neveu I, Naveilhan P, Baudet C, et al. 1, 25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes[J]. Neuroreport, 1994, 6(1): 124-126.
[42]
Chabas JF, Stephan D, Marqueste T, et al. Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury[J]. PLoS One, 2013, 8(5): e65034.
[43]
Shehab D, Al-Jarallah K, Abdella N, et al. Prospective Evaluation of the Effect of Short-Term Oral Vitamin D Supplementation on Peripheral Neuropathy in Type 2 Diabetes Mellitus[J]. Medical Principles and Practice, 2015, 24(3): 250-256.
[44]
Premkumar LS, Pabbidi RM. Diabetic Peripheral Neuropathy: Role of Reactive Oxygen and Nitrogen Species[J]. Cell Biochemistry and Biophysics, 2013, 67(2): 373-383.
[45]
Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision[J]. European Journal of Neurology, 2010, 17(9): 1113-e88.
[46]
Calcutt N, Jolivalt C, Fernyhough P. Growth Factors as Therapeutics for Diabetic Neuropathy[J]. Current Drug Targets, 2008, 9(1): 47-59.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 李聪, 徐艳, 吴铭, 丁瑞东, 王军. 极低出生体重儿出生时血清25-羟维生素D水平与其生后早期喂养不耐受关系的临床分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 309-314.
[4] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[5] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[6] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[7] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[8] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[9] 王正宇, 孙琳. 硒联合不同药物治疗桥本甲状腺炎的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 125-127.
[10] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[11] 李锦亮, 曾茂娟, 钟金宝, 何伟强, 林文新. 司美格鲁肽对肥胖2型糖尿病患者皮肤微循环功能的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 192-196.
[12] 秦晓光, 毛忠琦, 周晓庆, 谢尔凡, 吴国强, 张敏, 李威杰. 单吻合口胃旁路术对于肥胖及糖尿病患者心脑血管风险的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 120-125.
[13] 穆曼娜, 胡莹清, 李远, 张勇军, 胡细玲, 林倍思, 刘德昭. 氯雷他定联用普瑞巴林治疗2型糖尿病皮肤瘙痒症的临床效果评价[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 114-119.
[14] 戚晓阳, 杨平, 杜忠秋, 邱旭升, 汤黎明, 陈一心. 袖状胃切除术对肥胖合并2型糖尿病大鼠模型骨密度的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 102-108.
[15] 何亚伟, 陈皖京, 宋佳宏, 于刚, 贾犇黎, 汪泳. 肥胖患者SCH、血清维生素D水平与NAFLD严重程度关系的研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 95-101.
阅读次数
全文


摘要