[1] |
Hering T. Update of the GINA-Recommendations[J]. MMW Fortschritte der Medizin, 2017, 159(10): 63-64.
|
[2] |
Chung KF. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment?[J]. The Journal of allergy and clinical immunology, 2017, 139(4): 1071-1081.
|
[3] |
Barko PC, McMichael MA, Swanson KS, et al. The Gastrointestinal Microbiome: A Review[J]. Journal of veterinary internal medicine, 2018, 32(1): 9-25.
|
[4] |
McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity[J]. European journal of immunology, 2018, 48(1): 39-49.
|
[5] |
Maruvada P, Leone V, Kaplan LM, et al. The Human Microbiome and Obesity: Moving beyond Associations[J]. Cell host & microbe, 2017, 22(5): 589-599.
|
[6] |
Tojo R, Suarez A, Clemente MG, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis[J]. World journal of gastroenterology, 2014, 20(41): 15163-15176.
|
[7] |
Godoy AS, Camilo CM, Kadowaki MA, et al. Crystal structure of beta1-->6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by alpha-galactose[J]. The FEBS journal, 2016, 283(22): 4097-4112.
|
[8] |
赵娜,邓旻. 肠道菌群移位对多脏器功能障碍综合征发生发展的影响及其防治[J]. 浙江中西医结合杂志, 2017, 27(2): 165-168.
|
[9] |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nature reviews Microbiology, 2017, 15(1): 55-63.
|
[10] |
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2016年版)[J]. 中华结核和呼吸杂志, 2016, 39(9): 675-697.
|
[11] |
Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention[J]. Annals of nutrition & metabolism, 2015, 66(Suppl 2): 7-12.
|
[12] |
Chen YC, Fan HY, Huang YT, et al. Causal relationships between adiposity and childhood asthma: bi-directional Mendelian Randomization analysis[J]. International journal of obesity (2005), 2018, 43(1): 73-81.
|
[13] |
Sutherland ER, Goleva E, King TS, et al. Cluster analysis of obesity and asthma phenotypes[J]. PloS one, 2012, 7(5): e36631.
|
[14] |
Bates JHT, Poynter ME, Frodella CM, et al. Pathophysiology to Phenotype in the Asthma of Obesity[J]. Annals of the American Thoracic Society, 2017, 14(Supplement_5): S395-s398.
|
[15] |
Peters U, Dixon AE, Forno E. Obesity and asthma[J]. The Journal of allergy and clinical immunology, 2018, 141(4): 1169-1179.
|
[16] |
Lin J, Zhang Y, He C, Dai J. Probiotics supplementation in children with asthma: A systematic review and meta-analysis[J]. Journal of paediatrics and child health, 2018, 54(9): 953-961.
|
[17] |
Kang Y, Cai Y. The development of probiotics therapy to obesity: a therapy that has gained considerable momentum[J]. Hormones (Athens, Greece), 2018, 17(2): 141-151.
|
[18] |
Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice[J]. Science translational medicine, 2009, 1(6): 6.
|
[19] |
Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023.
|
[20] |
Xiao L, Sonne SB, Feng Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice[J]. Microbiome, 2017, 5(1): 43.
|
[21] |
Million M, Lagier JC, Yahav D, et al. Gut bacterial microbiota and obesity[J]. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19(4): 305-313.
|
[22] |
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science (New York, NY), 2013, 341(6150): 1241214.
|
[23] |
Musso G, Gambino R, Cassader M. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders[J]. Current opinion in lipidology, 2010, 21(1): 76-83.
|
[24] |
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772.
|
[25] |
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
|
[26] |
Hersoug LG, Moller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity[J]. Obesity reviews, 2016, 17(4): 297-312.
|
[27] |
Tuomi K, Logomarsino JV. Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery[J]. Metabolic syndrome and related disorders, 2016, 14(6): 279-288.
|
[28] |
Okba AM, Saber SM, Abdel-Rehim AS, et al. Fecal microbiota profile in atopic asthmatic adult patients[J]. European annals of allergy and clinical immunology, 2018, 50(3): 117-124.
|
[29] |
Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity[J]. Nature, 2012, 488(7413): 621-626.
|
[30] |
Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. Journal of gastroenterology, 2017, 52(1): 1-8.
|
[31] |
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nature medicine, 2014, 20(2): 159-166.
|
[32] |
den Besten G, Bleeker A, Gerding A, et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis to Fat Oxidation[J]. Diabetes, 2015, 64(7): 2398-2408.
|
[33] |
Zhang Z, Shi L, Pang W, et al. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model[J]. PloS one, 2016, 11(2): e0147778.
|
[34] |
Vinolo MA, Rodrigues HG, Hatanaka E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. The Journal of nutritional biochemistry, 2011, 22(9): 849-855.
|
[35] |
Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites[J]. Nature communications, 2015, 6: 7320.
|
[36] |
Mai XM, Chen Y, Krewski D. Does leptin play a role in obesity-asthma relationship?[J]. Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology, 2009, 20(3): 207-12.
|
[37] |
Liang L, Hur J, Kang JY, et al. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model[J]. The Korean journal of internal medicine, 2018, 33(6): 1210-1223.
|
[38] |
Lu Y, Fan C, Li P, et al. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota[J]. Scientific reports, 2016, 6: 37589.
|
[39] |
Zaibi MS, Stocker CJ, O'Dowd J, et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids[J]. FEBS letters, 2010, 584(11): 2381-2386.
|
[40] |
Miethe S, Guarino M, Alhamdan F, et al. Effects of obesity on asthma: immunometabolic links[J]. Polish archives of internal medicine, 2018, 128(7-8): 469-477.
|
[41] |
Mathews JA, Wurmbrand AP, Ribeiro L, et al. Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D[J]. Frontiers in immunology, 2014, 5: 440.
|
[42] |
Zeng Z, Lin X, Zheng R, et al. Celastrol Alleviates Airway Hyperresponsiveness and Inhibits Th17 Responses in Obese Asthmatic Mice[J]. Frontiers in pharmacology, 2018, 9: 49.
|
[43] |
Teng F, Felix KM, Bradley CP, et al. The impact of age and gut microbiota on Th17 and Tfh cells in K/BxN autoimmune arthritis[J]. Arthritis research & therapy, 2017, 19(1): 188.
|
[44] |
O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease[J]. Journal of immunology (Baltimore, Md: 1950), 2016, 196(12): 4839-4847.
|
[45] |
Shukla SD, Budden KF, Neal R, et al. Microbiome effects on immunity, health and disease in the lung[J]. Clinical & translational immunology, 2017, 6(3): e133.
|
[46] |
Raftis EJ, Delday MI, Cowie P, et al. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration[J]. Scientific reports, 2018, 8(1): 12024.
|
[47] |
Zarrati M, Salehi E, Mofid V, et al. Relationship between probiotic consumption and IL-10 and IL-17 secreted by PBMCs in overweight and obese people[J]. Iranian journal of allergy, asthma, and immunology, 2013, 12(4): 404-406.
|
[48] |
Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity[J]. Nature medicine, 2014, 20(1): 54-61.
|
[49] |
Pisi G, Fainardi V, Aiello M, et al. The role of the microbiome in childhood asthma[J]. Immunotherapy, 2017, 9(15): 1295-1304.
|
[50] |
Williams NC, Johnson MA, Shaw DE, et al. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation[J]. The British journal of nutrition, 2016, 116(5): 798-804.
|
[51] |
Durack J, Kimes NE, Lin DL, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation[J]. Nature communications, 2018, 9(1): 707.
|
[52] |
江丰,史立伟,王川, 等. 多种益生菌改善肥胖症患者慢性炎症状态的临床观察[J]. 世界最新医学信息文摘, 2018, 18(82): 105+108.
|
[53] |
Zmora N, Zilberman-Schapira G, Suez J, et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features[J]. Cell, 2018, 174(6): 1388-405.e21.
|