切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 104 -108. doi: 10.3877/cma.j.issn.2095-9605.2019.02.008

所属专题: 文献

综述

肠道菌群在肥胖型哮喘发病机制中的研究进展
何婉琪1, 翁育清1,()   
  1. 1. 519000 珠海,暨南大学附属珠海医院呼吸内科
  • 收稿日期:2019-03-25 出版日期:2019-05-30
  • 通信作者: 翁育清

Research progress of intestinal flora in pathogenesis of obesity asthma

Wanqi He1, Yuqing Weng1()   

  • Received:2019-03-25 Published:2019-05-30
  • Corresponding author: Yuqing Weng
引用本文:

何婉琪, 翁育清. 肠道菌群在肥胖型哮喘发病机制中的研究进展[J]. 中华肥胖与代谢病电子杂志, 2019, 05(02): 104-108.

Wanqi He, Yuqing Weng. Research progress of intestinal flora in pathogenesis of obesity asthma[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(02): 104-108.

[1]
Hering T. Update of the GINA-Recommendations[J]. MMW Fortschritte der Medizin, 2017, 159(10): 63-64.
[2]
Chung KF. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment?[J]. The Journal of allergy and clinical immunology, 2017, 139(4): 1071-1081.
[3]
Barko PC, McMichael MA, Swanson KS, et al. The Gastrointestinal Microbiome: A Review[J]. Journal of veterinary internal medicine, 2018, 32(1): 9-25.
[4]
McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity[J]. European journal of immunology, 2018, 48(1): 39-49.
[5]
Maruvada P, Leone V, Kaplan LM, et al. The Human Microbiome and Obesity: Moving beyond Associations[J]. Cell host & microbe, 2017, 22(5): 589-599.
[6]
Tojo R, Suarez A, Clemente MG, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis[J]. World journal of gastroenterology, 2014, 20(41): 15163-15176.
[7]
Godoy AS, Camilo CM, Kadowaki MA, et al. Crystal structure of beta1-->6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by alpha-galactose[J]. The FEBS journal, 2016, 283(22): 4097-4112.
[8]
赵娜,邓旻. 肠道菌群移位对多脏器功能障碍综合征发生发展的影响及其防治[J]. 浙江中西医结合杂志, 2017, 27(2): 165-168.
[9]
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis[J]. Nature reviews Microbiology, 2017, 15(1): 55-63.
[10]
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2016年版)[J]. 中华结核和呼吸杂志, 2016, 39(9): 675-697.
[11]
Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention[J]. Annals of nutrition & metabolism, 2015, 66(Suppl 2): 7-12.
[12]
Chen YC, Fan HY, Huang YT, et al. Causal relationships between adiposity and childhood asthma: bi-directional Mendelian Randomization analysis[J]. International journal of obesity (2005), 2018, 43(1): 73-81.
[13]
Sutherland ER, Goleva E, King TS, et al. Cluster analysis of obesity and asthma phenotypes[J]. PloS one, 2012, 7(5): e36631.
[14]
Bates JHT, Poynter ME, Frodella CM, et al. Pathophysiology to Phenotype in the Asthma of Obesity[J]. Annals of the American Thoracic Society, 2017, 14(Supplement_5): S395-s398.
[15]
Peters U, Dixon AE, Forno E. Obesity and asthma[J]. The Journal of allergy and clinical immunology, 2018, 141(4): 1169-1179.
[16]
Lin J, Zhang Y, He C, Dai J. Probiotics supplementation in children with asthma: A systematic review and meta-analysis[J]. Journal of paediatrics and child health, 2018, 54(9): 953-961.
[17]
Kang Y, Cai Y. The development of probiotics therapy to obesity: a therapy that has gained considerable momentum[J]. Hormones (Athens, Greece), 2018, 17(2): 141-151.
[18]
Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice[J]. Science translational medicine, 2009, 1(6): 6.
[19]
Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023.
[20]
Xiao L, Sonne SB, Feng Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice[J]. Microbiome, 2017, 5(1): 43.
[21]
Million M, Lagier JC, Yahav D, et al. Gut bacterial microbiota and obesity[J]. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19(4): 305-313.
[22]
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science (New York, NY), 2013, 341(6150): 1241214.
[23]
Musso G, Gambino R, Cassader M. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders[J]. Current opinion in lipidology, 2010, 21(1): 76-83.
[24]
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772.
[25]
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
[26]
Hersoug LG, Moller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity[J]. Obesity reviews, 2016, 17(4): 297-312.
[27]
Tuomi K, Logomarsino JV. Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery[J]. Metabolic syndrome and related disorders, 2016, 14(6): 279-288.
[28]
Okba AM, Saber SM, Abdel-Rehim AS, et al. Fecal microbiota profile in atopic asthmatic adult patients[J]. European annals of allergy and clinical immunology, 2018, 50(3): 117-124.
[29]
Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity[J]. Nature, 2012, 488(7413): 621-626.
[30]
Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. Journal of gastroenterology, 2017, 52(1): 1-8.
[31]
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nature medicine, 2014, 20(2): 159-166.
[32]
den Besten G, Bleeker A, Gerding A, et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis to Fat Oxidation[J]. Diabetes, 2015, 64(7): 2398-2408.
[33]
Zhang Z, Shi L, Pang W, et al. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model[J]. PloS one, 2016, 11(2): e0147778.
[34]
Vinolo MA, Rodrigues HG, Hatanaka E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. The Journal of nutritional biochemistry, 2011, 22(9): 849-855.
[35]
Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites[J]. Nature communications, 2015, 6: 7320.
[36]
Mai XM, Chen Y, Krewski D. Does leptin play a role in obesity-asthma relationship?[J]. Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology, 2009, 20(3): 207-12.
[37]
Liang L, Hur J, Kang JY, et al. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model[J]. The Korean journal of internal medicine, 2018, 33(6): 1210-1223.
[38]
Lu Y, Fan C, Li P, et al. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota[J]. Scientific reports, 2016, 6: 37589.
[39]
Zaibi MS, Stocker CJ, O'Dowd J, et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids[J]. FEBS letters, 2010, 584(11): 2381-2386.
[40]
Miethe S, Guarino M, Alhamdan F, et al. Effects of obesity on asthma: immunometabolic links[J]. Polish archives of internal medicine, 2018, 128(7-8): 469-477.
[41]
Mathews JA, Wurmbrand AP, Ribeiro L, et al. Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D[J]. Frontiers in immunology, 2014, 5: 440.
[42]
Zeng Z, Lin X, Zheng R, et al. Celastrol Alleviates Airway Hyperresponsiveness and Inhibits Th17 Responses in Obese Asthmatic Mice[J]. Frontiers in pharmacology, 2018, 9: 49.
[43]
Teng F, Felix KM, Bradley CP, et al. The impact of age and gut microbiota on Th17 and Tfh cells in K/BxN autoimmune arthritis[J]. Arthritis research & therapy, 2017, 19(1): 188.
[44]
O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease[J]. Journal of immunology (Baltimore, Md: 1950), 2016, 196(12): 4839-4847.
[45]
Shukla SD, Budden KF, Neal R, et al. Microbiome effects on immunity, health and disease in the lung[J]. Clinical & translational immunology, 2017, 6(3): e133.
[46]
Raftis EJ, Delday MI, Cowie P, et al. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration[J]. Scientific reports, 2018, 8(1): 12024.
[47]
Zarrati M, Salehi E, Mofid V, et al. Relationship between probiotic consumption and IL-10 and IL-17 secreted by PBMCs in overweight and obese people[J]. Iranian journal of allergy, asthma, and immunology, 2013, 12(4): 404-406.
[48]
Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity[J]. Nature medicine, 2014, 20(1): 54-61.
[49]
Pisi G, Fainardi V, Aiello M, et al. The role of the microbiome in childhood asthma[J]. Immunotherapy, 2017, 9(15): 1295-1304.
[50]
Williams NC, Johnson MA, Shaw DE, et al. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation[J]. The British journal of nutrition, 2016, 116(5): 798-804.
[51]
Durack J, Kimes NE, Lin DL, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation[J]. Nature communications, 2018, 9(1): 707.
[52]
江丰,史立伟,王川, 等. 多种益生菌改善肥胖症患者慢性炎症状态的临床观察[J]. 世界最新医学信息文摘, 2018, 18(82): 105+108.
[53]
Zmora N, Zilberman-Schapira G, Suez J, et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features[J]. Cell, 2018, 174(6): 1388-405.e21.
[1] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[4] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[5] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[6] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[7] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[10] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[13] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要