切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (01) : 15 -19. doi: 10.3877/cma.j.issn.2095-9605.2019.01.003

所属专题: 文献

论著

小凹蛋白1在棕榈酸酯诱导肝细胞脂质沉积中的作用
林楚文1, 曾文1, 林硕1, 刘坤莹1, 徐芬1, 梁华1, 曾龙驿1,()   
  1. 1. 510630 广州,中山大学附属第三医院内分泌与代谢病科,广东省糖尿病防治重点实验室
  • 收稿日期:2019-01-10 出版日期:2019-02-28
  • 通信作者: 曾龙驿
  • 基金资助:
    广东省自然科学基金重点项目(2018B030311012); 广东省科技计划项目(2017A020215026); 广东省医学科研基金项目(A2017314)

The role of caveolin1 in palmitic acid-induced hepatic steatosis

Chuwen Lin1, Wen Zeng1, Shuo Lin1, Kunying Liu1, Fen Xu1, Hua Liang1, Longyi Zeng1,()   

  1. 1. Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
  • Received:2019-01-10 Published:2019-02-28
  • Corresponding author: Longyi Zeng
  • About author:
    Corresponding author: Zeng Longyi, Email:
引用本文:

林楚文, 曾文, 林硕, 刘坤莹, 徐芬, 梁华, 曾龙驿. 小凹蛋白1在棕榈酸酯诱导肝细胞脂质沉积中的作用[J]. 中华肥胖与代谢病电子杂志, 2019, 05(01): 15-19.

Chuwen Lin, Wen Zeng, Shuo Lin, Kunying Liu, Fen Xu, Hua Liang, Longyi Zeng. The role of caveolin1 in palmitic acid-induced hepatic steatosis[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(01): 15-19.

目的

探讨小凹蛋白1(CAV1)在棕榈酸酯(PA)诱导HepG2细胞脂质沉积中的作用及其机制。

方法

通过慢病毒载体构建过表达CAV1的HepG2细胞株,以空载体病毒转染组作为阴性对照组,每组细胞分别加入10%脱脂BSA和0.3mMPA处理24 h后,用油红染色观察各组细胞内脂质沉积,GPO-PAP酶法检测甘油三酯(TG)含量,qPCR检测PGC1α,sirt3的mRNA表达水平。

结果

PA处理可以显著增加HepG2细胞内脂质沉积(P<0.01);与对照组相比,过表达CAV1可以显著减少细胞内脂质沉积(P<0.05),显著上调PGC1α,sirt3的mRNA表达水平(P<0.05)。

结论

CAV1可能通过上调PGC1α-sirt3通路抑制PA诱导的HepG2细胞脂质沉积。

Objective

To explore the role of caveolin1 in palmitic acid (PA)-induced hepatic steatosis.

Methods

Stable caveolin1 (CAV1) overexpressing HepG2 cells were developed by transfection with lentiviral particles containing human CAV1 protein (Lenti-CAV1). Lenti-Control served as a negative control. After 24 hours fatty acid free bovine serum albumin (BSA) and PA incubation, lipid deposition was determined by Oil red staining and cellular triglyceride was measured. Real time PCR was used to detect the mRNA expression of PGC1α and sirt3.

Results

Compared with BSA treatment, PA treatment for 24 hours increased the lipid droplets and triglyceride content (P<0.01). Compared with negative control, overexpression of caveolin1 attenuated the accumulation of lipid droplets and triglyceride content in HepG2 cells (P<0.05) . At the same time , the mRNA expression of PGC1α and sirt3 were increased in CAV1 overexpressing cells (P<0.05).

Conclusions

Caveolin1 may improve PA-induced hepatic steatosis through up-regulating PGC1α-sirt3 axis.

表1 荧光定量PCR相关基因引物序列
图1 油红O染色观察PA诱导的HepG2细胞脂质沉积。1A为BSA+LV-control组;1B为BSA+ LV-Cav1组;1C为PA+LV-control组;1D为PA+ LV-Cav1组(倒置显微镜200倍)。
图2 TG定量观察过表达Cav1对棕榈酸酯诱导HepG2细胞脂质沉积的影响。
图3 过表达Cav1对HepG2细胞PGC1α mRNA表达量的影响
图4 过表达Cav1对HepG2细胞sirt3 mRNA表达量的影响
[1]
Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: Prevalence and impact on world health[J]. Hepatology, 2016, 64(1):19-22.
[2]
Festi D, Colecchia A, Sacco T, et al. Hepatic steatosis in obese patients: clinical aspects and prognostic significance[J]. Obes Rev, 2004, 5(1):27-42.
[3]
Izumi T, Shibata Y, Yamamoto T. The cytoplasmic surface structures of uncoated vesicles in various tissues of rat as revealed by quick-freeze, deep-etching replicas[J]. J Electron Microsc (Tokyo), 1989, 38(1):47-53.
[4]
Kim CA, Delepine M, Boutet E, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy[J]. J Clin Endocrinol Metab, 2008, 93(4):1129-1134.
[5]
Cohen AW, Razani B, Wang XB, et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue[J]. Am J Physiol Cell Physiol, 2003, 285(1):C222-C235.
[6]
Baudrand R, Gupta N, Garza A E, et al. Caveolin 1 Modulates Aldosterone-Mediated Pathways of Glucose and Lipid Homeostasis[J]. J Am Heart Assoc, 2016, 5(10):e003845.
[7]
Li M, Chen D, Huang H, et al. Caveolin1 protects against diet induced hepatic lipid accumulation in mice[J]. PLoS One, 2017, 12(6):e178748.
[8]
Pojoga LH, Underwood PC, Goodarzi MO, et al. Variants of the caveolin-1 gene: a translational investigation linking insulin resistance and hypertension[J]. J Clin Endocrinol Metab, 2011, 96(8):E1288-E1292.
[9]
PALADE GE. An electron microscope study of the mitochondrial structure[J]. J Histochem Cytochem, 1953, 1(4):188-211.
[10]
Li B, Zhang Z, Zhang H, et al. Aberrant miR199a-5p/caveolin1/PPARalpha axis in hepatic steatosis[J]. J Mol Endocrinol, 2014, 53(3):393-403.
[11]
Yoneda M, Hotta K, Nozaki Y, et al. Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD)[J]. BMC Gastroenterol, 2008, 8(1):27.
[12]
Adiels M, Taskinen MR, Boren J. Fatty liver, insulin resistance, and dyslipidemia[J]. Curr Diab Rep, 2008, 8(1):60-64.
[13]
Aharoni-Simon M, Hann-Obercyger M, Pen S, et al. Fatty liver is associated with impaired activity of PPARgamma-coactivator 1alpha (PGC1alpha) and mitochondrial biogenesis in mice[J]. Lab Invest, 2011, 91(7):1018-1028.
[14]
Estall JL, Kahn M, Cooper MP, et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression[J]. Diabetes, 2009, 58(7):1499-1508.
[15]
Louet JF, Hayhurst G, Gonzalez FJ, et al. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB)[J]. J Biol Chem, 2002, 277(41):37991-38000.
[16]
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes[J]. Mol Cell Biol, 2000, 20(5):1868-1876.
[17]
Schwer B, North B J, Frye R A, et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase[J]. J Cell Biol, 2002, 158(4):647-657.
[18]
张爽,朱晓辉,卢新, 等. 非酒精性脂肪性肝病风险基因SIRT3的关联验证和体内过表达效应研究[J]. 第三军医大学学报, 2017(08):737-742.
[19]
Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome[J]. Mol Cell, 2011, 44(2):177-190.
[20]
Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation[J]. Nature, 2010, 464(7285):121-125.
[21]
Lu Z, Chen Y, Aponte A M, et al. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function[J]. J Biol Chem, 2015, 290(4):2466-2476.
[22]
Dittenhafer-Reed KE, Richards AL, Fan J, et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching[J]. Cell Metab, 2015, 21(4):637-646.
[23]
Cho EH. SIRT3 as a Regulator of Non-alcoholic Fatty Liver Disease[J]. J Lifestyle Med, 2014, 4(2):80-85.
[24]
Shi T, Fan GQ, Xiao SD. SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells[J]. J Dig Dis, 2010, 11(1):55-62.
[25]
Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis[J]. PLoS One, 2010, 5(7):e11707.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 赵亚楠, 方明, 徐绍岩, 魏树梅, 张慧, 黄奕宁, 刘亚静, 黄品同. 多声学技术参数联合血清学指标对非酒精性脂肪性肝病肝脂肪变性阶段的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(11): 1164-1173.
[3] 万欣, 贺秋霞, 李明明, 王守志, 陈曦, 杨秀华. 超声衰减成像技术评价肝脂肪变性的相关因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(01): 57-62.
[4] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[5] 成军. 新基因丙型肝炎病毒核心蛋白结合蛋白6(HCBP6)的发现和研究[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(05): 353-356.
[6] 党智萍, 马莉娜, 饶伟, 孔心涓. 肝移植术后并发非酒精性脂肪性肝病研究进展[J]. 中华移植杂志(电子版), 2021, 15(01): 60-63.
[7] 肖永胜, 周俭. 非酒精性脂肪性肝病相关肝细胞癌临床特征与发病机制研究进展[J]. 中华肝脏外科手术学电子杂志, 2018, 07(03): 169-172.
[8] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[9] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
[10] 朱国英, 陈利, 舍玲, 白洁, 丁永年, 朱风尚. 微生态调节剂治疗非酒精性脂肪性肝病的现状和困境[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 1-4.
[11] 陈利, 朱风尚, 杨长青. 非酒精性脂肪性肝炎相关肝细胞癌特征及诊治进展[J]. 中华消化病与影像杂志(电子版), 2020, 10(06): 267-271.
[12] 刘同亭. 我国非酒精性脂肪性肝病的诊疗进展[J]. 中华消化病与影像杂志(电子版), 2019, 09(06): 244-247.
[13] 王冰心, 白珊珊, 张佳佳, 党小红. 非酒精性脂肪性肝病与肠道菌群的关系[J]. 中华消化病与影像杂志(电子版), 2018, 08(04): 163-165.
[14] 张梅玉, 吴胜利, 向蔚婷, 孙克红, 李农. 体检人群甘油三酯葡萄糖指数对非酒精性脂肪性肝病发病风险的诊断价值[J]. 中华诊断学电子杂志, 2022, 10(03): 152-157.
[15] 史宇泽, 单晓东, 褚薛慧, 朱赛赛, 孙喜太. 肥胖人群血清尿酸水平与非酒精性脂肪性肝病严重程度的相关性分析[J]. 中华肥胖与代谢病电子杂志, 2021, 07(04): 232-238.
阅读次数
全文


摘要