切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2016, Vol. 02 ›› Issue (04) : 196 -200. doi: 10.3877/cma.j.issn.2095-9605.2016.04.003

所属专题: 文献

专家论坛

分子生物学在代谢手术治疗肥胖与糖尿病机制中的研究进展
沈奇伟1, 邵怡凯1, 姚琪远1,()   
  1. 1. 200040 上海,复旦大学附属华山医院普外科
  • 收稿日期:2016-11-22 出版日期:2016-11-30
  • 通信作者: 姚琪远

Progress of molecular biology in the mechanism research on metabolic surgery in treating obesity and diabetes mellitus

Qiwei Shen1, Yikai Shao1, Qiyuan Yao1()   

  • Received:2016-11-22 Published:2016-11-30
  • Corresponding author: Qiyuan Yao
引用本文:

沈奇伟, 邵怡凯, 姚琪远. 分子生物学在代谢手术治疗肥胖与糖尿病机制中的研究进展[J]. 中华肥胖与代谢病电子杂志, 2016, 02(04): 196-200.

Qiwei Shen, Yikai Shao, Qiyuan Yao. Progress of molecular biology in the mechanism research on metabolic surgery in treating obesity and diabetes mellitus[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2016, 02(04): 196-200.

[1]
Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2014, 384(9945):766-781.
[2]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract, 2010, 87(1):4-14.
[3]
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes[J]. New Engl J Med, 2012, 366(17):1577-1585.
[4]
Chang SH, Stoll CR, Song J, et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012[J]. JAMA Surg, 2014, 149(3):275-287.
[5]
Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent[J]. Gastroenterology, 2013, 144(1):50-52.
[6]
Valderas JP, Irribarra V, Rubio L, et al. Effects of sleeve gastrectomy and medical treatment for obesity on glucagon-like peptide 1 levels and glucose homeostasis in non-diabetic subjects[J]. Obes Surg, 2011, 21(7):902-909.
[7]
Peterli R, Wölnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial[J]. Ann Surg, 2009, 250(2):234-241.
[8]
Wilson-Pérez HE, Chambers AP, Ryan KK, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency[J]. Diabetes, 2013, 62(7):2380-2385.
[9]
Ye J, Hao Z, Mumphrey MB, et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 306(5):R352-362.
[10]
le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass[J]. Ann Surg, 2007, 246(5):780-785.
[11]
Chandarana K, Gelegen C, Karra E, et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY[J]. Diabetes, 2011, 60(3):810-818.
[12]
Woelnerhanssen B, Peterli R, Steinert RE, et al. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy--a prospective randomized trial[J]. Surg Obes Relat Dis, 2011, 7(5):561-568.
[13]
Kawano Y, Ohta M, Hirashita T, et al. Effects of sleeve gastrectomy on lipid metabolism in an obese diabetic rat model[J]. Obes Surg, 2013, 23(12):1947-1956.
[14]
Kelly AS, Ryder JR, Marlatt KL, et al. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity[J]. Int J Obes (Lond), 2016, 40(2):275-280.
[15]
Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers[J]. Obesity (Silver Spring), 2013, 21(3):E182-E189.
[16]
Schneck AS, Iannelli A, Patouraux S, et al. Effects of sleeve gastrectomy in high fat diet-induced obese mice: respective role of reduced caloric intake, white adipose tissue inflammation and changes in adipose tissue and ectopic fat depots[J]. Surg Endosc, 2014, 28(2):592-602.
[17]
Hankir MK, Bronisch F, Hintschich C, et al. Differential effects of Roux-en-Y gastric bypass surgery on brown and beige adipose tissue thermogenesis[J]. Metabolism, 2015, 64(10):1240-1249.
[18]
Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacol Rev, 2014, 66(4):948-983.
[19]
Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders[J]. Trends Mol Med, 2015, 21(11):702-714.
[20]
Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance[J]. Nat Med, 2015, 21(2):159-165.
[21]
Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy[J]. Nature, 2014, 509(7499):183-188.
[22]
Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J]. Nature, 2006, 439(7075):484-489.
[23]
Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3):167-177.
[24]
Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control[J]. Endocrinology, 2012, 153(8):3613-3619.
[25]
Zhao L. The gut microbiota and obesity: from correlation to causality[J]. Nat Rev Microbiol, 2013, 11(9):639-647.
[26]
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150):1241214.
[27]
Duca FA, Sakar Y, Lepage P, et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats[J]. Diabetes, 2014, 63(5):1624-1636.
[28]
赵立平,费娜. 肠道菌群与肥胖症的关系研究进展[J]. 微生物与感染, 2013, 8(2):67-71.
[29]
Carmody RN, Gerber GK, Luevano JM, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe, 2015, 17(1):72-84.
[30]
Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12):3049-3057.
[31]
Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J]. Sci Transl Med, 2013, 5(178):178ra41.
[32]
Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation[J]. Cell Metab, 2015, 22(2):228-238.
[33]
Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity[J]. Nat Rev Endocrinol, 2015, 11(5):276-288.
[34]
Karbiener M, Scheideler M. MicroRNA functions in brite/Brown fat-novel perspectives towards anti-obesity strategies[J]. Comput Struct Biotechnol J, 2014, 11(19):101-105.
[35]
Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases[J]. FEBS J, 2011, 278(10):1619-1633.
[36]
Wu Q, Li JV, Seyfried F, et al. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery[J]. Int J Obes (Lond), 2015, 39(7):1126-1134.
[37]
Lirun K, Sewe M, Yong W. A pilot study: the effect of Roux-en-Y gastric bypass on the Serum microRNAs of the type 2 diabetes patient[J]. Obes Surg, 2015, 25(12):2386-2392.
[38]
Brandacher G, Golderer G, Kienzl K, et al. Potential applications of global protein expression analysis (proteomics) in morbid obesity and bariatric surgery[J]. Obes Surg, 2008, 18(7):905-910.
[39]
Oberbach A, von Bergen M, Blüher S, et al. Combined serum proteomic and metabonomic profiling after laparoscopic sleeve gastrectomy in children and adolescents[J]. J Laparoendosc Adv Surg Tech A, 2012, 22(2):184-188.
[1] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[2] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[3] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[4] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[5] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[6] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[7] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[8] 栾恒钰, 赛晓勇. 创伤后应激障碍的治疗现状及研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 112-118.
[9] 韦笑韩, 任振, 潘晨, 吴立胜. 减重代谢手术后复胖原因分析及治疗进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 172-178.
[10] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
[11] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[12] 高文星, 刘浩, 赵稳, 李丁昌, 陈鹏, 金露佳, 刘先强, 董光龙. 减重手术后慢性腹痛的原因与对策[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 149-154.
[13] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[14] 刘澳, 周菁, 孙永兵, 和俊雅, 林新贝, 乔琦, 李中林, 张建成, 武肖玲, 邹智, 胡扬喜, 肖新广, 吕雪, 李昊, 李永丽. 减重代谢手术后神经影像改变与认知功能评估的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 203-208.
[15] 闫文貌, 韩威, 白日星. 减重与代谢手术中被忽视的脾上极动脉[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 92-94.
阅读次数
全文


摘要