[1] |
Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2014, 384(9945):766-781.
|
[2] |
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract, 2010, 87(1):4-14.
|
[3] |
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes[J]. New Engl J Med, 2012, 366(17):1577-1585.
|
[4] |
Chang SH, Stoll CR, Song J, et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012[J]. JAMA Surg, 2014, 149(3):275-287.
|
[5] |
Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent[J]. Gastroenterology, 2013, 144(1):50-52.
|
[6] |
Valderas JP, Irribarra V, Rubio L, et al. Effects of sleeve gastrectomy and medical treatment for obesity on glucagon-like peptide 1 levels and glucose homeostasis in non-diabetic subjects[J]. Obes Surg, 2011, 21(7):902-909.
|
[7] |
Peterli R, Wölnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial[J]. Ann Surg, 2009, 250(2):234-241.
|
[8] |
Wilson-Pérez HE, Chambers AP, Ryan KK, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency[J]. Diabetes, 2013, 62(7):2380-2385.
|
[9] |
Ye J, Hao Z, Mumphrey MB, et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 306(5):R352-362.
|
[10] |
le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass[J]. Ann Surg, 2007, 246(5):780-785.
|
[11] |
Chandarana K, Gelegen C, Karra E, et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY[J]. Diabetes, 2011, 60(3):810-818.
|
[12] |
Woelnerhanssen B, Peterli R, Steinert RE, et al. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy--a prospective randomized trial[J]. Surg Obes Relat Dis, 2011, 7(5):561-568.
|
[13] |
Kawano Y, Ohta M, Hirashita T, et al. Effects of sleeve gastrectomy on lipid metabolism in an obese diabetic rat model[J]. Obes Surg, 2013, 23(12):1947-1956.
|
[14] |
Kelly AS, Ryder JR, Marlatt KL, et al. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity[J]. Int J Obes (Lond), 2016, 40(2):275-280.
|
[15] |
Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers[J]. Obesity (Silver Spring), 2013, 21(3):E182-E189.
|
[16] |
Schneck AS, Iannelli A, Patouraux S, et al. Effects of sleeve gastrectomy in high fat diet-induced obese mice: respective role of reduced caloric intake, white adipose tissue inflammation and changes in adipose tissue and ectopic fat depots[J]. Surg Endosc, 2014, 28(2):592-602.
|
[17] |
Hankir MK, Bronisch F, Hintschich C, et al. Differential effects of Roux-en-Y gastric bypass surgery on brown and beige adipose tissue thermogenesis[J]. Metabolism, 2015, 64(10):1240-1249.
|
[18] |
Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacol Rev, 2014, 66(4):948-983.
|
[19] |
Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders[J]. Trends Mol Med, 2015, 21(11):702-714.
|
[20] |
Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance[J]. Nat Med, 2015, 21(2):159-165.
|
[21] |
Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy[J]. Nature, 2014, 509(7499):183-188.
|
[22] |
Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J]. Nature, 2006, 439(7075):484-489.
|
[23] |
Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3):167-177.
|
[24] |
Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control[J]. Endocrinology, 2012, 153(8):3613-3619.
|
[25] |
Zhao L. The gut microbiota and obesity: from correlation to causality[J]. Nat Rev Microbiol, 2013, 11(9):639-647.
|
[26] |
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150):1241214.
|
[27] |
Duca FA, Sakar Y, Lepage P, et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats[J]. Diabetes, 2014, 63(5):1624-1636.
|
[28] |
赵立平,费娜. 肠道菌群与肥胖症的关系研究进展[J]. 微生物与感染, 2013, 8(2):67-71.
|
[29] |
Carmody RN, Gerber GK, Luevano JM, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe, 2015, 17(1):72-84.
|
[30] |
Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12):3049-3057.
|
[31] |
Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J]. Sci Transl Med, 2013, 5(178):178ra41.
|
[32] |
Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation[J]. Cell Metab, 2015, 22(2):228-238.
|
[33] |
Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity[J]. Nat Rev Endocrinol, 2015, 11(5):276-288.
|
[34] |
Karbiener M, Scheideler M. MicroRNA functions in brite/Brown fat-novel perspectives towards anti-obesity strategies[J]. Comput Struct Biotechnol J, 2014, 11(19):101-105.
|
[35] |
Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases[J]. FEBS J, 2011, 278(10):1619-1633.
|
[36] |
Wu Q, Li JV, Seyfried F, et al. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery[J]. Int J Obes (Lond), 2015, 39(7):1126-1134.
|
[37] |
Lirun K, Sewe M, Yong W. A pilot study: the effect of Roux-en-Y gastric bypass on the Serum microRNAs of the type 2 diabetes patient[J]. Obes Surg, 2015, 25(12):2386-2392.
|
[38] |
Brandacher G, Golderer G, Kienzl K, et al. Potential applications of global protein expression analysis (proteomics) in morbid obesity and bariatric surgery[J]. Obes Surg, 2008, 18(7):905-910.
|
[39] |
Oberbach A, von Bergen M, Blüher S, et al. Combined serum proteomic and metabonomic profiling after laparoscopic sleeve gastrectomy in children and adolescents[J]. J Laparoendosc Adv Surg Tech A, 2012, 22(2):184-188.
|