切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 12 -16. doi: 10.3877/cma.j.issn.2095-9605.2023.01.003

论著

基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征
买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木()   
  1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院自治区普外微创研究所;新疆维吾尔自治区胃食管反流病及减重代谢外科临床研究中心;新疆维吾尔自治区人民医院医学研究与转化中心
    830001 乌鲁木齐,新疆维吾尔自治区人民医院自治区普外微创研究所;新疆维吾尔自治区人民医院医学研究与转化中心
    830001 乌鲁木齐,新疆维吾尔自治区人民医院自治区普外微创研究所
    830001 乌鲁木齐,新疆维吾尔自治区人民医院自治区普外微创研究所;新疆维吾尔自治区胃食管反流病及减重代谢外科临床研究中心
  • 收稿日期:2022-09-30 出版日期:2023-02-28
  • 通信作者: 克力木·阿不都热依木
  • 基金资助:
    新疆维吾尔自治区引进高层次人才天池百人计划项目(201939); 国家自然科学基金(82060166); 新疆维吾尔自治区自然科学基金(2021D01C148)

Analysis of structural characteristics of intestinal flora in high-fat diet inducedobesity mice based on 16s rRNA sequencing

Yisireyili Maimaiti·, Yongkang Wang, Wusiman Ababokeli, Abudureyimu Kelimu·()   

  1. Research institute of general and minimally invasive surgery; Clinical research center for gastroesophageal reflux disease and weight loss metabo lic surgery; Medical research and transformation center of People's Hospital of Xinjiang Uygur Autonom ous Region, Urumqi 830001, China
    Research institute of general and minimally invasive surgery; Medical research and transformation center of People's Hospital of Xinjiang Uygur Autonom ous Region, Urumqi 830001, China
    Research institute of general and minimally invasive surgery
    Research institute of general and minimally invasive surgery; Clinical research center for gastroesophageal reflux disease and weight loss metabo lic surgery
  • Received:2022-09-30 Published:2023-02-28
  • Corresponding author: Abudureyimu Kelimu·
引用本文:

买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J/OL]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.

Yisireyili Maimaiti·, Yongkang Wang, Wusiman Ababokeli, Abudureyimu Kelimu·. Analysis of structural characteristics of intestinal flora in high-fat diet inducedobesity mice based on 16s rRNA sequencing[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2023, 09(01): 12-16.

目的

探究高脂饮食诱导肥胖模型中小鼠肠道菌群的分步分类及结构特征。

方法

8周龄,SPF级雄性昆明小鼠随机分为两组,即正常组(NC组,n=8)和肥胖组(Obs组,n=8);通过高脂饮食诱导方式建立小鼠肥胖(Obs)模型,利用16s rRNA高通量测序技术,检测小鼠肠道菌群,并分析比较高脂饮食诱导Obs小鼠与NC小鼠的菌群组成差异。

结果

Obs组小鼠粪便菌群的有效序列得到261个操作单元(OTUs)聚类,其明显低于NC组(353个OTUs);Obs组的ACE和Chaol指数低于NC组、Obs组的Simpson指数高于NC组,提示Obs组肠道菌落丰富性及多样性低于NC组。Obs组的肠道菌属中Bacteroidales(杆菌科)、Campylobacterales(弯曲杆菌)、Lactobacillales(乳酸杆菌)以及Enterobacteriales(肠杆菌)的含量与NC组比较明显下降(P<0.05);而Obs组的肠道菌属中Desulfovifrionales(脱硫氟菌属)和Erysipelotrichales(白痢杆菌)的含量,与NC组比较明显上升(P<0.05)。

结论

高脂饮食诱导肥胖的诱导小鼠肠道菌群的多样性显著降低,菌群分布发生显著变化。

Objective

To explore the classification and structural characteristics of intestinal flora in obese mice induced by high-fat diet.

Methods

Eight week old SPF male kunming mice were randomly divided into two groups: normal group (NC group, n=8) and obese group (Obs group, n=8).The obese mice (Obs) model was induced by high-fat diet. The intestinal microflora of mice was detected by 16s rRNA high-throughput sequencing technology, and the differences between high-fat diet mice and normal mice were analyzed and compared.

Results

The effective sequence of mouse fecal flora in Obs group was clustered into 261 operation units (OTUs), which was lower than that in NC group (353 OTUs); The ACE and Chaol indexes of Obs group were lower than those of NC group, and the Simpson index of Obs group was higher than that of NC group, indicating that the flora richness and diversity of Obs group were lower than those of NC group. The contents of Bacteroidales, Campylobacteres, Lactobacillus and Enterobacteriaceae in the bacteria genus of Obs group werelower than those of NC group (P<0.05).The contents of Desulfovifrionales and Erysipelothrichales in the fecal flora of Obs mice were higher than those in the normal control group (P<0.05).

Conclusions

The diversity of intestinal microflora in obesity induced mice decreased significantly, and the distribution of intestinal microflora changed significantly.

表1 高脂饲料与标准饲料成分
表2 两组肠道微生物丰度及多样比较(n=8)
图2 两组小鼠肠道微生物群落结构分析(n=8)
图3 两组小鼠肠道微生物群落结构分析(n=8)
图4 两组小鼠肠道微生物群落定量分析(n=8)
图1 两组肠道微生物丰度及多样比较(n=8)
[1]
Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases [J].Signal Transduct Target Ther, 2022, 7(1): 135.
[2]
Liu BN, Liu XT, Liang ZH, et al. Gut microbiota in obesity [J]. World J Gastroenterol, 2021, 27(25): 3837-3850.
[3]
江欣倚, 刘玲, 熊靖飞,等. 限制性末端片段长度多态性分析技术及其在肠道微生物研究中的应用 [J]. 生物技术世界, 2016(2): 307-307, 309.
[4]
买买提·依斯热依力, 艾克拜尔·艾力, 吾布力卡斯木·吾拉木, 等. 饮食诱导小鼠肥胖模型中胃食管黏膜的变化研究 [J]. 中华胃食管反流病电子杂志, 2018, 5 (1): 10-14.
[5]
Yisireyili M, Uchida Y,Yamamoto K, et al. Angiotensin receptor blocker irbesartan reduces stress-induced intestinal inflammation via AT1a signaling and ACE2-dependent mechanism in mice [J]. Brain Behav Immun, 2018, 69: 167-179.
[6]
汪菲, 曾强, 李春霖. 肠道菌群在肥胖与糖尿病干预中的作用研究进展 [J]. 海南医学院学报, 2017, 23(13): 1877-1880.
[7]
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease [J]. Front Cardiovasc Med, 2020, 7: 22.
[8]
袁宵潇, 罗飞宏. 肠道菌群与肥胖,糖尿病关系的研究进展 [J]. 医学综述, 2020, 26(2): 346-350.
[9]
Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, et al. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications [J].Adv Nutr, 2019, 10(suppl_1): S17-S30.
[10]
Sabag-Daigle A, Dyszel JL, Gonzalez JF, et al. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae [J]. Front Cell Infect Microbiol, 2015, 5: 47.
[11]
Nagpal R, Mainali R, Ahmadi S, et al. Gut microbiome and aging: Physiological and mechanistic insights [J]. Nutr Healthy Aging, 2018, 4(4): 267-285.
[12]
Zheng X, Huang F, Zhao A, et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice [J]. BMC Biol, 2017, 15(1): 120.
[13]
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(11): 655-672.
[14]
汪婷婷, 郑乃盛, 袁向亮, 等. 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征 [J]. 诊断学理论与实践, 2019, 18(3): 263-270.
[15]
Li J, Dawson PA. Animal models to study bile acid metabolism [J].Biochim Biophys Acta Mol Basis Dis, 2019, 1865(5): 895-911.
[16]
Ticho AL, Malhotra P, Dudeja PK, et al. Intestinal Absorption of Bile Acids in Health and Disease [J]. Compr Physiol, 2019, 10(1): 21-56.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[3] 龚静, 王荣. 绵阳地区136例3~5岁儿童口腔微生物菌群结构及其对患龋的影响[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 100-107.
[4] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[5] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[6] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[7] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[8] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[9] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[10] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[11] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[12] 王秀, 王义国. 益生菌联合恩替卡韦治疗乙型肝炎肝硬化临床疗效的meta分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 164-171.
[13] 谢鸿, 李娜, 李尚日, 谢涛. 肠道菌群特征对结肠癌化学治疗疗效的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 53-56.
[14] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[15] 徐凤华, 喻丽玲, 路晓光, 王迎莉, 宋轶. 高脂饲喂小鼠结肠ILC3s变化对肠屏障应激能力的影响[J/OL]. 中华卫生应急电子杂志, 2024, 10(02): 107-114.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?