切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2021, Vol. 07 ›› Issue (04) : 270 -274. doi: 10.3877/cma.j.issn.2095-9605.2021.04.010

综述

热量限制延长寿命相关营养信号通路研究进展
曹可1, 王振军1, 韩加刚1,()   
  1. 1. 100020 北京,首都医科大学附属北京朝阳医院
  • 收稿日期:2021-10-13 出版日期:2021-11-30
  • 通信作者: 韩加刚

Research progress on nutrient signaling pathways related to calorie restriction prolonging life span

Ke Cao1, Zhenjun Wang1, Jiagang Han1()   

  • Received:2021-10-13 Published:2021-11-30
  • Corresponding author: Jiagang Han
引用本文:

曹可, 王振军, 韩加刚. 热量限制延长寿命相关营养信号通路研究进展[J]. 中华肥胖与代谢病电子杂志, 2021, 07(04): 270-274.

Ke Cao, Zhenjun Wang, Jiagang Han. Research progress on nutrient signaling pathways related to calorie restriction prolonging life span[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2021, 07(04): 270-274.

[1]
Pifferi F, Aujard F. Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies [J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 95: 109702.
[2]
Hwangbo D, Lee H, Abozaid LS, et al. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms [J]. Nutrients, 2020, 12(4): 1194.
[3]
Maduro AT, Luís C, Soares R. Ageing, cellular senescence and the impact of diet: an overview [J]. Porto Biomedical Journal, 2021, 6(1): e120.
[4]
Most J, Tosti V, Redman LM, et al. Calorie restriction in humans: An update [J]. Ageing Research Reviews, 2017, 39: 36-45.
[5]
Gensous N, Franceschi C, Santoro A, et al. The Impact of Caloric Restriction on the Epigenetic Signatures of Aging [J]. International Journal of Molecular Sciences, 2019, 20(8): 2022.
[6]
Sadria M, Layton AT. Interactions among mTORC, AMPK and SIRT: a computational model for cell energy balance and metabolism [J]. Cell Communication and Signaling, 2021, 19(1): 57.
[7]
Carling D. AMPK signalling in health and disease [J]. Current Opinion in Cell Biology, 2017,45:31-37.
[8]
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging [J]. Cell metabolism, 2014, 20(1): 10-25.
[9]
Weir HJ, Yao P, Huynh FK, et al. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling [J]. Cell Metabolism, 2017, 26(6): 884-896.
[10]
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease [J]. Nature Reviews Molecular cell biology, 2020, 21(4): 183-203.
[11]
Liu Q, Li H, Wang J, et al. Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/SIRT1-FOXA3-Beclin1 pathway [J]. Experimental Gerontology, 2020, 139: 111053.
[12]
Niemann B, Li L, Simm A, et al. Caloric restriction reduces sympathetic activity similar to beta-blockers but conveys additional mitochondrio-protective effects in aged myocardium [J]. Scientific Reports, 2021, 11(1): 1931.
[13]
Ma L, Wang R, Wang H, et al. Long-term caloric restriction activates the myocardial SIRT1/AMPK/PGC-1α pathway in C57BL/6J male mice [J]. Food & Nutrition Research, 2020, 64: 3668.
[14]
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease [J]. Cell, 2017, 168(6): 960-976.
[15]
Ferreira-Marques M, Carvalho A, Cavadas C, et al. PI3K/AKT/MTOR and ERK1/2-MAPK signaling pathways are involved in autophagy stimulation induced by caloric restriction or caloric restriction mimetics in cortical neurons [J]. Aging, 2021, 13(6): 7872-7882.
[16]
Igarashi M, Guarente L. mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction [J]. Cell, 2016, 166(2): 436-450.
[17]
Pan H, Finkel T. Key proteins and pathways that regulate lifespan [J]. Journal of Biological Chemistry, 2017, 292(16): 6452-6460.
[18]
Jiang Y, Yan F, Feng Z, et al. Signaling network of forkhead family of transcription factors (FOXO) in dietary restriction [J]. Cells, 2020, 9(1): 100.
[19]
Hoshino S, Kobayashi M, Higami Y. Mechanisms of the anti-aging and prolongevity effects of caloric restriction: evidence from studies of genetically modified animals [J]. Aging, 2018, 10(9): 2243-2251.
[20]
Murphy C, Koehler K. Caloric restriction induces anabolic resistance to resistance exercise [J]. European Journal of Applied Physiology, 2020, 120(5): 1155-1164.
[21]
Kazemi A, Speakman JR, Soltani S, et al. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: A systematic review and meta-analysis [J]. Clinical Nutrition, 2020, 39(6): 1705-1716.
[22]
Teixeira CSS, Cerqueira NMFS, Gomes P, et al. A Molecular Perspective on Sirtuin Activity [J]. International Journal of Molecular Sciences, 2020,21(22): 8609.
[23]
Zullo A, Simone E, Grimaldi M, et al. Sirtuins as mediator of the anti-ageing effects of calorie restriction in skeletal and cardiac muscle [J]. International Journal of Molecular Sciences, 2018, 19(4): 928.
[24]
Lilja S, Stoll C, Krammer U, et al. Five days periodic fasting elevates levels of longevity related christensenella and sirtuin expression in humans [J]. International Journal of Molecular Sciences, 2021, 22(5): 2331.
[25]
Roichman A, Elhanati S, Aon MA, et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan [J]. Nature Communications, 2021, 12(1): 3208.
[26]
Ke Z, Firsanov D, Spencer B, et al. Short-term calorie restriction enhances DNA repair by non-homologous end joining in mice [J]. npj Aging and Mechanisms of Disease, 2020, 6(1): 9.
[27]
Li Z, Xu K, Guo Y, et al. A high-fat diet reverses metabolic disorders and premature aging by modulating insulin and IGF1 signaling in SIRT6 knockout mice [J]. Aging Cell, 2020, 19(3): e13104.
[28]
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, et al. Importance of circadian timing for aging and longevity [J]. Nature communications, 2021, 12(1): 2862.
[29]
Chaudhari A, Gupta R, Makwana K, et al. Circadian clocks, diets and aging [J]. Nutrition and Healthy Aging, 2017, 4(2): 101-112.
[30]
Katewa SD, Akagi K, Bose N, et al. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in drosophila [J]. Cell Metabolism, 2016, 23(1): 143-154.
[31]
Solovev I, Shegoleva E, Fedintsev A, et al. Circadian clock genes’ overexpression in Drosophila alters diet impact on lifespan [J]. Biogerontology, 2019, 20(2): 159-170.
[32]
Ingram DK, Roth GS. Calorie restriction mimetics: Can you have your cake and eat it, too? [J]. Ageing Research Reviews, 2015, 20: 46-62.
[33]
Shintani H, Shintani T, Ashida H, et al. Calorie restriction mimetics: upstream-type compounds for modulating glucose metabolism [J]. Nutrients, 2018, 10(12): 1821.
[34]
Martel J, Chang S, Wu C, et al. Recent advances in the field of caloric restriction mimetics and anti-aging molecules [J]. Ageing Research Reviews, 2021, 66: 101240.
[35]
Yang X, Kord-Varkaneh H, Talaei S, et al. The influence of metformin on IGF-1 levels in humans: A systematic review and meta-analysis [J]. Pharmacological Research, 2020, 151: 104588.
[36]
Mansur AP, Roggerio A, Goes MFS, et al. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial [J]. International Journal of Cardiology, 2017, 227: 788-794.
[37]
Nicoletti C, Cortes-Oliveira C, Pinhel M, et al. Bariatric surgery and precision nutrition [J]. Nutrients, 2017, 9(9): 974.
[38]
Huang H, Aminian A, Hassan M, et al. Gastric bypass surgery improves the skeletal muscle ceramide/s1p ratio and upregulates the AMPK/ SIRT1/ PGC-1α pathway in zucker diabetic fatty rats [J]. Obesity Surgery, 2019, 29(7): 2158-2165.
[39]
García-Prieto CF, Gil-Ortega M, Vega-Martín E, et al. Beneficial effect of bariatric surgery on abnormal mmp-9 and ampk activities: potential markers of obesity-related CV risk [J]. Frontiers in Physiology, 2019, 10: 553.
[40]
Ferraz-Bannitz R, Welendorf CR, Coelho PO, et al. Bariatric surgery can acutely modulate ER-stress and inflammation on subcutaneous adipose tissue in non-diabetic patients with obesity [J]. Diabetology & Metabolic Syndrome, 2021, 13(1): 19.
[1] 刘银凤, 袁关利, 马力. PER基因家族在恶性肿瘤中的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 40-46.
[2] 韩珊珊, 徐琰, 陈卿, 杨钰坪, 明佳, 周妮娅, 李雪, 刘科. 近日节律紊乱与乳腺癌的关系[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 102-106.
[3] 赵玲, 尹香花. LKB1-AMPK-mTOR信号通路在子宫内膜癌的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(02): 228-232.
[4] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[5] 张敏龙, 金发光. MiR-138-5p通过抑制SIRT1表达增强了海水吸入性肺损伤中炎症反应[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 751-755.
[6] 林淑芃. 浆细胞在自身免疫性疾病中的作用—治疗新靶点[J]. 中华肾病研究电子杂志, 2020, 09(05): 240-240.
[7] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[8] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[9] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[10] 党海波, 陈祥芳, 乔波, 郭彤彤, 孙畅. 卒中相关昼夜节律失调性睡眠-觉醒障碍研究进展[J]. 中华针灸电子杂志, 2022, 11(03): 123-125.
[11] 蒋东洋, 滕丕秀, 赵传喜, 唐勇, 梁英. sirtuin家族与血管衰老的相关性[J]. 中华老年病研究电子杂志, 2020, 07(02): 54-58.
[12] 姚尧, 刘克洋, 张豪, 朱乔, 宁超学, 吕发勤, 赵亚力. 百岁人群健康状况及相关影响因素分析[J]. 中华老年病研究电子杂志, 2019, 06(04): 8-12.
[13] 李正达, 张艳兵, 刘茂霞, 李玉芳, 杨新静. 艾司洛尔对脓毒症肠损伤的保护作用及对自噬蛋白AMPK表达水平的影响[J]. 中华卫生应急电子杂志, 2023, 09(02): 90-95.
[14] 林楚文, 曾文, 林硕, 刘坤莹, 徐芬, 梁华, 曾龙驿. 小凹蛋白1在棕榈酸酯诱导肝细胞脂质沉积中的作用[J]. 中华肥胖与代谢病电子杂志, 2019, 05(01): 15-19.
[15] 史静, 郝晨曦, 何苗, 李伟荣. 昼夜节律与沉默信息调节因子1在缺血性脑卒中神经保护中的相互作用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 154-158.
阅读次数
全文


摘要