切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2020, Vol. 06 ›› Issue (02) : 122 -126. doi: 10.3877/cma.j.issn.2095-9605.2020.02.009

所属专题: 文献

综述

内质网应激在非酒精性脂肪肝病中的作用
李祖寅1, 周志杰1, 晏滨1, 王晓亮2,()   
  1. 1. 201600 上海,上海交通大学附属第一人民医院普外科
    2. 201700 上海,复旦大学附属中山医院青浦分院普外科
  • 收稿日期:2019-11-08 出版日期:2020-05-30
  • 通信作者: 王晓亮
  • 基金资助:
    国家自然科学基金项目(81670514)

Role of endoplasmic reticulum stress in nonalcoholic fatty liver disease

Zuyin Li1, Zhijie Zhou1, Bin Yan1   

  • Received:2019-11-08 Published:2020-05-30
引用本文:

李祖寅, 周志杰, 晏滨, 王晓亮. 内质网应激在非酒精性脂肪肝病中的作用[J]. 中华肥胖与代谢病电子杂志, 2020, 06(02): 122-126.

Zuyin Li, Zhijie Zhou, Bin Yan. Role of endoplasmic reticulum stress in nonalcoholic fatty liver disease[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2020, 06(02): 122-126.

图1 内质网应激动在NAFLD中的作用示意图
[1]
Clemente MG, Mandato C, Poeta M, et al. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions[J]. World J Gastroenterol, 2016, 22(36): 8078-8093.
[2]
Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease[J]. Ann Transl Med, 2017, 5(13): 270.
[3]
Lebeaupin C, Vallee D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 927-947.
[4]
Koo JH, Lee HJ, Kim W, et al. Endoplasmic Reticulum Stress in Hepatic Stellate Cells Promotes Liver Fibrosis via PERK-Mediated Degradation of HNRNPA1 and Up-regulation of SMAD2[J]. Gastroenterology, 2016, 150(1): 181-193 e188.
[5]
Zhang XQ, Xu CF, Yu CH, et al. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(7): 1768-1776.
[6]
Sun Z, Brodsky JL. Protein quality control in the secretory pathway[J]. J Cell Biol, 2019, 218(10): 3171-3187.
[7]
Preissler S, Ron D. Early Events in the Endoplasmic Reticulum Unfolded Protein Response[J]. Cold Spring Harb Perspect Biol, 2019, 11(4).
[8]
Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response[J]. Nat Cell Biol, 2000, 2(6): 326-332.
[9]
Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis[J]. Semin Liver Dis, 2019, 39(2): 235-248.
[10]
Huang J, Wan L, Lu H, et al. High expression of active ATF6 aggravates endoplasmic reticulum stressinduced vascular endothelial cell apoptosis through the mitochondrial apoptotic pathway[J]. Mol Med Rep, 2018, 17(5): 6483-6489.
[11]
Rozpedek W, Pytel D, Mucha B, et al. The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress[J]. Curr Mol Med, 2016, 16(6): 533-544.
[12]
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways[J]. Trends Biochem Sci, 2018, 43(8): 593-605.
[13]
Yang Y, Dong F, Liu X, et al. Crosstalk of oxidative damage, apoptosis, and autophagy under endoplasmic reticulum (ER) stress involved in thifluzamide-induced liver damage in zebrafish (Danio rerio)[J]. Environ Pollut, 2018, 243(Pt B): 1904-1911.
[14]
任路平, 于贤, 宋光耀, 等. 高果糖、高脂喂养致小鼠肝脏内质网应激的时程变化[J].中国老年学杂志, 2015, 35(23): 6692-6694.
[15]
Tian S, Li B, Lei P, et al. Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways[J]. Mol Nutr Food Res, 2018, 62(6): e1700737.
[16]
Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16314-16319.
[17]
Oyadomari S, Harding HP, Zhang Y, et al. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice[J]. Cell Metab, 2008, 7(6): 520-532.
[18]
Wang C, Huang Z, Du Y, et al. ATF4 regulates lipid metabolism and thermogenesis[J]. Cell Res, 2010, 20(2): 174-184.
[19]
Xiao G, Zhang T, Yu S, et al. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice[J]. J Biol Chem, 2013, 288(35): 25350-25361.
[20]
Olivares S, Henkel AS. The role of X-box binding protein 1 in the hepatic response to refeeding in mice[J]. J Lipid Res, 2019, 60(2): 353-359.
[21]
Flister KFT, Pinto BAS, Franca LM, et al. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice[J]. J Nutr Biochem, 2018, 62: 155-166.
[22]
郑璐, 韩冰, 汤雷, 等. 内质网应激诱导的自噬对肝细胞凋亡的影响[J]. 中国病理生理杂志, 2019, 35(2): 332-339.
[23]
Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF-kappaB activation in the pathogenesis of nonalcoholic steatohepatitis[J]. Mol Biol Cell, 2015, 26(12): 2190-2204.
[24]
Hu P, Han Z, Couvillon AD, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression[J]. Mol Cell Biol, 2006, 26(8): 3071-3084.
[25]
Duvigneau JC, Luis A, Gorman AM, et al. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases[J]. Cytokine, 2019, 124: 154577.
[26]
Zuo L, Zhu Y, Hu L, et al. PI3-kinase/Akt pathway-regulated membrane transportation of acid-sensing ion channel 1a/Calcium ion influx/endoplasmic reticulum stress activation on PDGF-induced HSC Activation[J]. J Cell Mol Med, 2019, 23(6): 3940-3950.
[27]
Heindryckx F, Binet F, Ponticos M, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1alpha-mediated degradation of miR-150 and XBP-1 splicing[J]. EMBO Mol Med, 2016, 8(7): 729-744.
[28]
汪应红, 王欢, 左龙泉, 等. 自噬在内质网应激诱导的肝星状细胞凋亡中的作用研究[J]. 安徽医科大学学报, 2016, 51(8): 1115-1119.
[29]
Huang Y, Li X, Wang Y, et al. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways[J]. Mol Cell Biochem, 2014, 394(1-2): 1-12.
[30]
Zheng J, Peng C, Ai Y, et al. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes[J]. Nutrients, 2016, 8(1).
[31]
Jang MK, Nam JS, Kim JH, et al. Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress[J]. J Ethnopharmacol, 2016, 185: 96-104.
[32]
Malhi H. MICRORNAs IN ER STRESS: DIVERGENT ROLES IN CELL FATE DECISIONS[J]. Curr Pathobiol Rep, 2014, 2(3): 117-122.
[33]
Chen Z, Liu Y, Yang L, et al. MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway[J]. Immunol Lett, 2020, 222: 40-48.
[34]
Pant K, Venugopal SK. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease[J]. Clin Res Hepatol Gastroenterol, 2017, 41(4): 370-377.
[35]
Kagawa T, Shirai Y, Oda S, et al. Identification of Specific MicroRNA Biomarkers in Early Stages of Hepatocellular Injury, Cholestasis, and Steatosis in Rats[J]. Toxicol Sci, 2018, 166(1): 228-239.
[36]
Liu CH, Ampuero J, Gil-Gomez A, et al. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Hepatol, 2018, 69(6): 1335-1348.
[37]
Liu J, Xiao Y, Wu X, et al. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis[J]. BMC Genomics, 2018, 19(1): 188.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 骆云凯, 鄢曹鑫, 张宣宣, 李如梅, 王文倩, 洪行行, 夏斌, 邹伟璞, 张珊珊, 陈剑. 声触诊弹性成像检测脾硬度对诊断慢性乙肝肝纤维化程度的应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(11): 1232-1237.
[3] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[4] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[5] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[6] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[7] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[8] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[9] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[10] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[13] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[14] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
[15] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
阅读次数
全文


摘要