切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2020, Vol. 06 ›› Issue (02) : 122 -126. doi: 10.3877/cma.j.issn.2095-9605.2020.02.009

所属专题: 文献

综述

内质网应激在非酒精性脂肪肝病中的作用
李祖寅1, 周志杰1, 晏滨1, 王晓亮2,()   
  1. 1. 201600 上海,上海交通大学附属第一人民医院普外科
    2. 201700 上海,复旦大学附属中山医院青浦分院普外科
  • 收稿日期:2019-11-08 出版日期:2020-05-30
  • 通信作者: 王晓亮
  • 基金资助:
    国家自然科学基金项目(81670514)

Role of endoplasmic reticulum stress in nonalcoholic fatty liver disease

Zuyin Li1, Zhijie Zhou1, Bin Yan1   

  • Received:2019-11-08 Published:2020-05-30
引用本文:

李祖寅, 周志杰, 晏滨, 王晓亮. 内质网应激在非酒精性脂肪肝病中的作用[J/OL]. 中华肥胖与代谢病电子杂志, 2020, 06(02): 122-126.

Zuyin Li, Zhijie Zhou, Bin Yan. Role of endoplasmic reticulum stress in nonalcoholic fatty liver disease[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2020, 06(02): 122-126.

图1 内质网应激动在NAFLD中的作用示意图
[1]
Clemente MG, Mandato C, Poeta M, et al. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions[J]. World J Gastroenterol, 2016, 22(36): 8078-8093.
[2]
Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease[J]. Ann Transl Med, 2017, 5(13): 270.
[3]
Lebeaupin C, Vallee D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 927-947.
[4]
Koo JH, Lee HJ, Kim W, et al. Endoplasmic Reticulum Stress in Hepatic Stellate Cells Promotes Liver Fibrosis via PERK-Mediated Degradation of HNRNPA1 and Up-regulation of SMAD2[J]. Gastroenterology, 2016, 150(1): 181-193 e188.
[5]
Zhang XQ, Xu CF, Yu CH, et al. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(7): 1768-1776.
[6]
Sun Z, Brodsky JL. Protein quality control in the secretory pathway[J]. J Cell Biol, 2019, 218(10): 3171-3187.
[7]
Preissler S, Ron D. Early Events in the Endoplasmic Reticulum Unfolded Protein Response[J]. Cold Spring Harb Perspect Biol, 2019, 11(4).
[8]
Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response[J]. Nat Cell Biol, 2000, 2(6): 326-332.
[9]
Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis[J]. Semin Liver Dis, 2019, 39(2): 235-248.
[10]
Huang J, Wan L, Lu H, et al. High expression of active ATF6 aggravates endoplasmic reticulum stressinduced vascular endothelial cell apoptosis through the mitochondrial apoptotic pathway[J]. Mol Med Rep, 2018, 17(5): 6483-6489.
[11]
Rozpedek W, Pytel D, Mucha B, et al. The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress[J]. Curr Mol Med, 2016, 16(6): 533-544.
[12]
Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways[J]. Trends Biochem Sci, 2018, 43(8): 593-605.
[13]
Yang Y, Dong F, Liu X, et al. Crosstalk of oxidative damage, apoptosis, and autophagy under endoplasmic reticulum (ER) stress involved in thifluzamide-induced liver damage in zebrafish (Danio rerio)[J]. Environ Pollut, 2018, 243(Pt B): 1904-1911.
[14]
任路平, 于贤, 宋光耀, 等. 高果糖、高脂喂养致小鼠肝脏内质网应激的时程变化[J].中国老年学杂志, 2015, 35(23): 6692-6694.
[15]
Tian S, Li B, Lei P, et al. Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways[J]. Mol Nutr Food Res, 2018, 62(6): e1700737.
[16]
Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16314-16319.
[17]
Oyadomari S, Harding HP, Zhang Y, et al. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice[J]. Cell Metab, 2008, 7(6): 520-532.
[18]
Wang C, Huang Z, Du Y, et al. ATF4 regulates lipid metabolism and thermogenesis[J]. Cell Res, 2010, 20(2): 174-184.
[19]
Xiao G, Zhang T, Yu S, et al. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice[J]. J Biol Chem, 2013, 288(35): 25350-25361.
[20]
Olivares S, Henkel AS. The role of X-box binding protein 1 in the hepatic response to refeeding in mice[J]. J Lipid Res, 2019, 60(2): 353-359.
[21]
Flister KFT, Pinto BAS, Franca LM, et al. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice[J]. J Nutr Biochem, 2018, 62: 155-166.
[22]
郑璐, 韩冰, 汤雷, 等. 内质网应激诱导的自噬对肝细胞凋亡的影响[J]. 中国病理生理杂志, 2019, 35(2): 332-339.
[23]
Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF-kappaB activation in the pathogenesis of nonalcoholic steatohepatitis[J]. Mol Biol Cell, 2015, 26(12): 2190-2204.
[24]
Hu P, Han Z, Couvillon AD, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression[J]. Mol Cell Biol, 2006, 26(8): 3071-3084.
[25]
Duvigneau JC, Luis A, Gorman AM, et al. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases[J]. Cytokine, 2019, 124: 154577.
[26]
Zuo L, Zhu Y, Hu L, et al. PI3-kinase/Akt pathway-regulated membrane transportation of acid-sensing ion channel 1a/Calcium ion influx/endoplasmic reticulum stress activation on PDGF-induced HSC Activation[J]. J Cell Mol Med, 2019, 23(6): 3940-3950.
[27]
Heindryckx F, Binet F, Ponticos M, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1alpha-mediated degradation of miR-150 and XBP-1 splicing[J]. EMBO Mol Med, 2016, 8(7): 729-744.
[28]
汪应红, 王欢, 左龙泉, 等. 自噬在内质网应激诱导的肝星状细胞凋亡中的作用研究[J]. 安徽医科大学学报, 2016, 51(8): 1115-1119.
[29]
Huang Y, Li X, Wang Y, et al. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways[J]. Mol Cell Biochem, 2014, 394(1-2): 1-12.
[30]
Zheng J, Peng C, Ai Y, et al. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes[J]. Nutrients, 2016, 8(1).
[31]
Jang MK, Nam JS, Kim JH, et al. Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress[J]. J Ethnopharmacol, 2016, 185: 96-104.
[32]
Malhi H. MICRORNAs IN ER STRESS: DIVERGENT ROLES IN CELL FATE DECISIONS[J]. Curr Pathobiol Rep, 2014, 2(3): 117-122.
[33]
Chen Z, Liu Y, Yang L, et al. MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway[J]. Immunol Lett, 2020, 222: 40-48.
[34]
Pant K, Venugopal SK. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease[J]. Clin Res Hepatol Gastroenterol, 2017, 41(4): 370-377.
[35]
Kagawa T, Shirai Y, Oda S, et al. Identification of Specific MicroRNA Biomarkers in Early Stages of Hepatocellular Injury, Cholestasis, and Steatosis in Rats[J]. Toxicol Sci, 2018, 166(1): 228-239.
[36]
Liu CH, Ampuero J, Gil-Gomez A, et al. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Hepatol, 2018, 69(6): 1335-1348.
[37]
Liu J, Xiao Y, Wu X, et al. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis[J]. BMC Genomics, 2018, 19(1): 188.
[1] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[2] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[3] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[4] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[5] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[6] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[9] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[10] 麦麦提依明·托合提, 柳叶, 张诚, 阿卜杜喀迪尔·牙森, 高峰, 王继超, 吴永刚. PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 73-79.
[11] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
[12] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[13] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[14] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[15] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?