切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 153 -156. doi: 10.3877/cma.j.issn.2095-9605.2019.03.007

所属专题: 文献

综述

迷走神经在肥胖发生和治疗中的作用研究进展
张隆江1, 申晓军1,()   
  1. 1. 200082 上海,海军军医大学附属长海医院普外科
  • 收稿日期:2019-07-30 出版日期:2019-08-30
  • 通信作者: 申晓军
  • 基金资助:
    国家自然科学基金(81570766); 上海市自然科学基金(17ZR1438400)

Research advances about the role of the vagus nerve in the pathogenesis and treatment of obesity

Longjiang Zhang1, Xiaojun Shen1()   

  • Received:2019-07-30 Published:2019-08-30
  • Corresponding author: Xiaojun Shen
引用本文:

张隆江, 申晓军. 迷走神经在肥胖发生和治疗中的作用研究进展[J]. 中华肥胖与代谢病电子杂志, 2019, 05(03): 153-156.

Longjiang Zhang, Xiaojun Shen. Research advances about the role of the vagus nerve in the pathogenesis and treatment of obesity[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(03): 153-156.

[1]
Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system[J]. Auton Neurosci, 2000, 85(1-3): 1-17.
[2]
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and signifificance[J]. Acta Physiol (Oxf), 2011, 201(3): 313-321.
[3]
de Lartigue G, Dimaline R, Varro A, Dockray GJ.Cocaine- and amphetamine-regulatedtranscript:stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin[J]. Neurosci, 2007, 27(11): 2876-2882.
[4]
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond[J]. Psychiatry, 2006, 3(5): 54-63.
[5]
Ritter RC. Gastrointestinal mechanisms of satiation for food[J]. Physiol Behav, 2004, 81(2): 249-273.
[6]
Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction[J]. Neurogastroenterol Motil, 2008, 20(1): 64-72.
[7]
de Lartigue G, Lur G, Dimaline R, et al. EGR1 is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons[J]. Endocrinology, 2010, 151(8): 3589-3599.
[8]
Mathis C, Moran TH, Schwartz GJ. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients[J]. Am J Physiol Regul Integr Comp Physiol, 1998, 274(2): R280-R286.
[9]
Bohorquez DV, Shahid RA, Erdmann A, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells[J].Clin Invest, 2015, 125(2): 782-786.
[10]
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons[J]. Physiol Behav, 2015, 139(c): 188-194.
[11]
Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety[J]. Endocrinology, 2009 150(4): 1680-1687.
[12]
Rehfeld JF. Gastrointestinal hormones and their targets[J].Adv Exp Med Biol, 2014, 817: 157-175.
[13]
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance[J].Acta Physiol (Oxf), 2011, 201(3): 313-321.
[14]
De Lartigue G. Putative roles of neuropeptides in vagal afferent signaling[J].Physiol Behav, 2014, 136: 155-169.
[15]
Konturek SJ, Konturek JW, Pawlik T, et al. Brain-gut axis and its role in the control of food intake[J]. Physiol Pharmacol, 2004, 55(1pt2): 137-154.
[16]
Berthoud HR. The vagus nerve, food intake and obesity[J].Regul Pept, 2008, 149(1-3): 15-25.
[17]
Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished cholecystokinin in rats[J]. Nutr, 2005, 135(8): 1953-1959.
[18]
Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors[J]. Peptide, 2001, 22(8): 1339-1348.
[19]
de Lartigue G, Barbier de la Serre C, Espero E, et al. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats[J]. PLoS One, 2012, 7(3): e32967.
[20]
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity[J]. Mol Metab, 2014, 3(6): 595-607.
[21]
Duca FA, Swartz TD, Sakar Y, et al. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors[J]. Int J Obes (Lond), 2013, 37(3): 375-381.
[22]
Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones [J].Physiol, 2013, 591(9): 235-2372.
[23]
de Lartigue G, Ronveaux CC, Raybould HE. Vagal plasticity the key to obesity[J]. Mol Metab, 2014, 3(9): 855-856.
[24]
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond[J]. Psychiatry, 2006, 3(5): 54-63.
[25]
Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator:Evolving trends[J]. J Nat Sci Biol Med, 2013, 4(1): 8-13.
[26]
Gil K, Bugajski A, Thor P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet[J].Physiol Pharmacol, 2011, 62(6): 637-646.
[27]
Grill HJ, Norgren R. The taste reactivity test. II.Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate ratss[J].Brain Res, 1978, 143(2): 281-297.
[28]
Gil K, Bugajski A, Skowron B, Thor P. Increased c-Fos expression in nodose ganglion in rats with electrical vagus nerve stimulationl[J].Folia Med Cracov, 2011, 51(1-4): 45-58.
[29]
Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial[J]. AMA, 2014, 312(9): 915-922.
[30]
Shikora SA, Wolfe BM, Apovian CM, et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge trial[J]. Obes, 2015, 365604.
[31]
Scott AShikora,James Toouli,. et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study[J]. Obes Surg, 2016, 26(5): 1021-1028.
[32]
Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitusl[J]. Obes, 2013, 245683.
[33]
Tweden KS, Anvari M, Bierk MD, et al. Vagal blocking for obesity control (VBLOC):concordance of effects of very high frequency vagal blocking currents at the neural and organ levels using two pre-clinical models[J]. Gastroenterology, 2006, 130: A-148.
[34]
Tweden KS, Sarr MG, Bierk MD, et al.Vagal blocking for obesity control (VBLOC): Studies of pancreatic and gastric function and safety in a porcine model[J]. Surg Obes Relat Dis, 2006, 2(3): 301-302
[35]
Kilgore KL, Bhadra N. Reversible nerve conduction block using kilohertz frequency alternating current[J]. Neuromodulation, 2014, 17(3): 242-254
[36]
Krieger JP, Arnold M, Pettersen KG, et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia[J]. Diabetes, 2016, 65(1): 34-43
[37]
Kang JG, Park CY. Anti-Obesity Drugs: A Review about Their Effects and Safety[J]. Diabetes Metab J, 2012, 36(1): 13-25.
[38]
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity[J]. Mol Metab, 2014, 3(6): 595-607.
[39]
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons[J]. Physiol Behav, 2015, 139: 188-194.
[40]
Tellez LA, Medina S, Han W, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency[J]. Science, 2013, 341(6147): 800-802.
[41]
Hankir MK, Seyfried F, Hintschich CA, et al. Gastric Bypass Surgery Recruits a Gut PPAR-alpha-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats[J].Cell Metab, 2017, 25(2): 335-344.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[3] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[4] 纪凯伦, 郝少龙, 孙海涛, 韩威. 减重术后胆囊结石形成机制的新进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 100-103.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 向承红, 刘伟, 耿苗苗, 张海泳. 肥胖患者腹壁巨大切口疝腹腔镜手术配合中精准化管理与应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 334-336.
[7] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[8] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[9] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[10] 高文星, 刘浩, 赵稳, 李丁昌, 陈鹏, 金露佳, 刘先强, 董光龙. 减重手术后慢性腹痛的原因与对策[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 149-154.
[11] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[12] 马俊蓉, 叶艳彬. 减重手术后的营养管理与复胖:现状与思考[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 165-172.
[13] 范晓轩, 王娜, 朱丽花, 王亮. 肥胖相关肿瘤研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 173-178.
[14] 李锦亮, 曾茂娟, 钟金宝, 何伟强, 林文新. 司美格鲁肽对肥胖2型糖尿病患者皮肤微循环功能的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 192-196.
[15] 刘玉苓, 王婷婷, 吴高峰, 俞淑静. 健康体检人群内脏脂肪面积与新型炎症标志物的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 197-202.
阅读次数
全文


摘要