[1] |
Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system[J]. Auton Neurosci, 2000, 85(1-3): 1-17.
|
[2] |
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and signifificance[J]. Acta Physiol (Oxf), 2011, 201(3): 313-321.
|
[3] |
de Lartigue G, Dimaline R, Varro A, Dockray GJ.Cocaine- and amphetamine-regulatedtranscript:stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin[J]. Neurosci, 2007, 27(11): 2876-2882.
|
[4] |
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond[J]. Psychiatry, 2006, 3(5): 54-63.
|
[5] |
Ritter RC. Gastrointestinal mechanisms of satiation for food[J]. Physiol Behav, 2004, 81(2): 249-273.
|
[6] |
Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction[J]. Neurogastroenterol Motil, 2008, 20(1): 64-72.
|
[7] |
de Lartigue G, Lur G, Dimaline R, et al. EGR1 is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons[J]. Endocrinology, 2010, 151(8): 3589-3599.
|
[8] |
Mathis C, Moran TH, Schwartz GJ. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients[J]. Am J Physiol Regul Integr Comp Physiol, 1998, 274(2): R280-R286.
|
[9] |
Bohorquez DV, Shahid RA, Erdmann A, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells[J].Clin Invest, 2015, 125(2): 782-786.
|
[10] |
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons[J]. Physiol Behav, 2015, 139(c): 188-194.
|
[11] |
Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety[J]. Endocrinology, 2009 150(4): 1680-1687.
|
[12] |
Rehfeld JF. Gastrointestinal hormones and their targets[J].Adv Exp Med Biol, 2014, 817: 157-175.
|
[13] |
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance[J].Acta Physiol (Oxf), 2011, 201(3): 313-321.
|
[14] |
De Lartigue G. Putative roles of neuropeptides in vagal afferent signaling[J].Physiol Behav, 2014, 136: 155-169.
|
[15] |
Konturek SJ, Konturek JW, Pawlik T, et al. Brain-gut axis and its role in the control of food intake[J]. Physiol Pharmacol, 2004, 55(1pt2): 137-154.
|
[16] |
Berthoud HR. The vagus nerve, food intake and obesity[J].Regul Pept, 2008, 149(1-3): 15-25.
|
[17] |
Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished cholecystokinin in rats[J]. Nutr, 2005, 135(8): 1953-1959.
|
[18] |
Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors[J]. Peptide, 2001, 22(8): 1339-1348.
|
[19] |
de Lartigue G, Barbier de la Serre C, Espero E, et al. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats[J]. PLoS One, 2012, 7(3): e32967.
|
[20] |
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity[J]. Mol Metab, 2014, 3(6): 595-607.
|
[21] |
Duca FA, Swartz TD, Sakar Y, et al. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors[J]. Int J Obes (Lond), 2013, 37(3): 375-381.
|
[22] |
Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones [J].Physiol, 2013, 591(9): 235-2372.
|
[23] |
de Lartigue G, Ronveaux CC, Raybould HE. Vagal plasticity the key to obesity[J]. Mol Metab, 2014, 3(9): 855-856.
|
[24] |
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond[J]. Psychiatry, 2006, 3(5): 54-63.
|
[25] |
Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator:Evolving trends[J]. J Nat Sci Biol Med, 2013, 4(1): 8-13.
|
[26] |
Gil K, Bugajski A, Thor P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet[J].Physiol Pharmacol, 2011, 62(6): 637-646.
|
[27] |
Grill HJ, Norgren R. The taste reactivity test. II.Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate ratss[J].Brain Res, 1978, 143(2): 281-297.
|
[28] |
Gil K, Bugajski A, Skowron B, Thor P. Increased c-Fos expression in nodose ganglion in rats with electrical vagus nerve stimulationl[J].Folia Med Cracov, 2011, 51(1-4): 45-58.
|
[29] |
Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial[J]. AMA, 2014, 312(9): 915-922.
|
[30] |
Shikora SA, Wolfe BM, Apovian CM, et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge trial[J]. Obes, 2015, 365604.
|
[31] |
Scott AShikora,James Toouli,. et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study[J]. Obes Surg, 2016, 26(5): 1021-1028.
|
[32] |
Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitusl[J]. Obes, 2013, 245683.
|
[33] |
Tweden KS, Anvari M, Bierk MD, et al. Vagal blocking for obesity control (VBLOC):concordance of effects of very high frequency vagal blocking currents at the neural and organ levels using two pre-clinical models[J]. Gastroenterology, 2006, 130: A-148.
|
[34] |
Tweden KS, Sarr MG, Bierk MD, et al.Vagal blocking for obesity control (VBLOC): Studies of pancreatic and gastric function and safety in a porcine model[J]. Surg Obes Relat Dis, 2006, 2(3): 301-302
|
[35] |
Kilgore KL, Bhadra N. Reversible nerve conduction block using kilohertz frequency alternating current[J]. Neuromodulation, 2014, 17(3): 242-254
|
[36] |
Krieger JP, Arnold M, Pettersen KG, et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia[J]. Diabetes, 2016, 65(1): 34-43
|
[37] |
Kang JG, Park CY. Anti-Obesity Drugs: A Review about Their Effects and Safety[J]. Diabetes Metab J, 2012, 36(1): 13-25.
|
[38] |
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity[J]. Mol Metab, 2014, 3(6): 595-607.
|
[39] |
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons[J]. Physiol Behav, 2015, 139: 188-194.
|
[40] |
Tellez LA, Medina S, Han W, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency[J]. Science, 2013, 341(6147): 800-802.
|
[41] |
Hankir MK, Seyfried F, Hintschich CA, et al. Gastric Bypass Surgery Recruits a Gut PPAR-alpha-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats[J].Cell Metab, 2017, 25(2): 335-344.
|