切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 153 -156. doi: 10.3877/cma.j.issn.2095-9605.2019.03.007

所属专题: 文献

综述

迷走神经在肥胖发生和治疗中的作用研究进展
张隆江1, 申晓军1,()   
  1. 1. 200082 上海,海军军医大学附属长海医院普外科
  • 收稿日期:2019-07-30 出版日期:2019-08-30
  • 通信作者: 申晓军
  • 基金资助:
    国家自然科学基金(81570766); 上海市自然科学基金(17ZR1438400)

Research advances about the role of the vagus nerve in the pathogenesis and treatment of obesity

Longjiang Zhang1, Xiaojun Shen1()   

  • Received:2019-07-30 Published:2019-08-30
  • Corresponding author: Xiaojun Shen
引用本文:

张隆江, 申晓军. 迷走神经在肥胖发生和治疗中的作用研究进展[J]. 中华肥胖与代谢病电子杂志, 2019, 05(03): 153-156.

Longjiang Zhang, Xiaojun Shen. Research advances about the role of the vagus nerve in the pathogenesis and treatment of obesity[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(03): 153-156.

[1]
Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system[J]. Auton Neurosci, 2000, 85(1-3): 1-17.
[2]
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and signifificance[J]. Acta Physiol (Oxf), 2011, 201(3): 313-321.
[3]
de Lartigue G, Dimaline R, Varro A, Dockray GJ.Cocaine- and amphetamine-regulatedtranscript:stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin[J]. Neurosci, 2007, 27(11): 2876-2882.
[4]
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond[J]. Psychiatry, 2006, 3(5): 54-63.
[5]
Ritter RC. Gastrointestinal mechanisms of satiation for food[J]. Physiol Behav, 2004, 81(2): 249-273.
[6]
Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction[J]. Neurogastroenterol Motil, 2008, 20(1): 64-72.
[7]
de Lartigue G, Lur G, Dimaline R, et al. EGR1 is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons[J]. Endocrinology, 2010, 151(8): 3589-3599.
[8]
Mathis C, Moran TH, Schwartz GJ. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients[J]. Am J Physiol Regul Integr Comp Physiol, 1998, 274(2): R280-R286.
[9]
Bohorquez DV, Shahid RA, Erdmann A, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells[J].Clin Invest, 2015, 125(2): 782-786.
[10]
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons[J]. Physiol Behav, 2015, 139(c): 188-194.
[11]
Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety[J]. Endocrinology, 2009 150(4): 1680-1687.
[12]
Rehfeld JF. Gastrointestinal hormones and their targets[J].Adv Exp Med Biol, 2014, 817: 157-175.
[13]
Dockray GJ, Burdyga G. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance[J].Acta Physiol (Oxf), 2011, 201(3): 313-321.
[14]
De Lartigue G. Putative roles of neuropeptides in vagal afferent signaling[J].Physiol Behav, 2014, 136: 155-169.
[15]
Konturek SJ, Konturek JW, Pawlik T, et al. Brain-gut axis and its role in the control of food intake[J]. Physiol Pharmacol, 2004, 55(1pt2): 137-154.
[16]
Berthoud HR. The vagus nerve, food intake and obesity[J].Regul Pept, 2008, 149(1-3): 15-25.
[17]
Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished cholecystokinin in rats[J]. Nutr, 2005, 135(8): 1953-1959.
[18]
Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors[J]. Peptide, 2001, 22(8): 1339-1348.
[19]
de Lartigue G, Barbier de la Serre C, Espero E, et al. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats[J]. PLoS One, 2012, 7(3): e32967.
[20]
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity[J]. Mol Metab, 2014, 3(6): 595-607.
[21]
Duca FA, Swartz TD, Sakar Y, et al. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors[J]. Int J Obes (Lond), 2013, 37(3): 375-381.
[22]
Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones [J].Physiol, 2013, 591(9): 235-2372.
[23]
de Lartigue G, Ronveaux CC, Raybould HE. Vagal plasticity the key to obesity[J]. Mol Metab, 2014, 3(9): 855-856.
[24]
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond[J]. Psychiatry, 2006, 3(5): 54-63.
[25]
Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator:Evolving trends[J]. J Nat Sci Biol Med, 2013, 4(1): 8-13.
[26]
Gil K, Bugajski A, Thor P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet[J].Physiol Pharmacol, 2011, 62(6): 637-646.
[27]
Grill HJ, Norgren R. The taste reactivity test. II.Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate ratss[J].Brain Res, 1978, 143(2): 281-297.
[28]
Gil K, Bugajski A, Skowron B, Thor P. Increased c-Fos expression in nodose ganglion in rats with electrical vagus nerve stimulationl[J].Folia Med Cracov, 2011, 51(1-4): 45-58.
[29]
Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial[J]. AMA, 2014, 312(9): 915-922.
[30]
Shikora SA, Wolfe BM, Apovian CM, et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge trial[J]. Obes, 2015, 365604.
[31]
Scott AShikora,James Toouli,. et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study[J]. Obes Surg, 2016, 26(5): 1021-1028.
[32]
Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitusl[J]. Obes, 2013, 245683.
[33]
Tweden KS, Anvari M, Bierk MD, et al. Vagal blocking for obesity control (VBLOC):concordance of effects of very high frequency vagal blocking currents at the neural and organ levels using two pre-clinical models[J]. Gastroenterology, 2006, 130: A-148.
[34]
Tweden KS, Sarr MG, Bierk MD, et al.Vagal blocking for obesity control (VBLOC): Studies of pancreatic and gastric function and safety in a porcine model[J]. Surg Obes Relat Dis, 2006, 2(3): 301-302
[35]
Kilgore KL, Bhadra N. Reversible nerve conduction block using kilohertz frequency alternating current[J]. Neuromodulation, 2014, 17(3): 242-254
[36]
Krieger JP, Arnold M, Pettersen KG, et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia[J]. Diabetes, 2016, 65(1): 34-43
[37]
Kang JG, Park CY. Anti-Obesity Drugs: A Review about Their Effects and Safety[J]. Diabetes Metab J, 2012, 36(1): 13-25.
[38]
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity[J]. Mol Metab, 2014, 3(6): 595-607.
[39]
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons[J]. Physiol Behav, 2015, 139: 188-194.
[40]
Tellez LA, Medina S, Han W, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency[J]. Science, 2013, 341(6147): 800-802.
[41]
Hankir MK, Seyfried F, Hintschich CA, et al. Gastric Bypass Surgery Recruits a Gut PPAR-alpha-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats[J].Cell Metab, 2017, 25(2): 335-344.
[1] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[2] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[3] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[4] 吉顺富, 汤晓燕, 徐进. 腹腔镜近端胃癌根治术中拓展胃后间隙在肥胖患者中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 393-396.
[5] 杨波, 胡旭, 何金艳, 谢铭. 腹腔镜袖状胃切除术管胃固定研究现状[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 452-455.
[6] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[7] 赵淑樱, 张聃. 腹腔镜胃癌外科治疗进展与发展趋势[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 459-462.
[8] 白正林, 高明, 孟增东. 肩关节置换术后假体周围感染的研究进展[J]. 中华肩肘外科电子杂志, 2024, 12(03): 271-276.
[9] 苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.
[10] 武继敏, 袁春雨, 王鲁佳, 陈伟霞, 李晓东, 马丽虹. 重复经颅磁刺激治疗脑卒中后中枢性疼痛的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 182-186.
[11] 唐小久, 胡曼, 许必君, 肖亚. 肥胖合并胃食管反流病患者严重程度与其焦虑抑郁及营养状态的相关性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 360-364.
[12] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[13] 颜宥彤, 赵锐, 万谦益, 张贵祥, 沈弘毅, 程中, 陈亿. GLP-1受体激动剂——司美格鲁肽的应用及安全性[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 88-93.
[14] 杨宁琍, 梁辉. 中国肥胖代谢外科个案管理教育培训现状及展望[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 94-99.
[15] 周彪, 李政奇, 孟化. 肥胖与内镜下减重治疗研究进展[J]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 100-107.
阅读次数
全文


摘要