切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2022, Vol. 08 ›› Issue (02) : 93 -96. doi: 10.3877/cma.j.issn.2095-9605.2022.02.004

论著

小肠电刺激减少肥胖大鼠进食时间
叶晓玲1, 张宇2, 万新月3,()   
  1. 1. 430060 武汉,武汉大学人民医院消化内科;310000 杭州,浙江大学医学院附属第一医院超声影像科
    2. 430060 武汉,武汉大学人民医院消化内科;450003 郑州,河南省人民医院消化内科
    3. 430060 武汉,武汉大学人民医院消化内科
  • 收稿日期:2022-01-30 出版日期:2022-05-30
  • 通信作者: 万新月
  • 基金资助:
    国家自然科学基金青年项目(81800481)

The eating duration was reduced by intestinal electrical stimulation in obese rats

Xiaoling Ye1, Yu Zhang2, Xinyue Wan3,()   

  1. 1. Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Ultrasound imaging, The First Affiliated Hospital of Zhejiang University Medical College, Hangzhou 310000, China
    2. Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
    3. Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2022-01-30 Published:2022-05-30
  • Corresponding author: Xinyue Wan
引用本文:

叶晓玲, 张宇, 万新月. 小肠电刺激减少肥胖大鼠进食时间[J/OL]. 中华肥胖与代谢病电子杂志, 2022, 08(02): 93-96.

Xiaoling Ye, Yu Zhang, Xinyue Wan. The eating duration was reduced by intestinal electrical stimulation in obese rats[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2022, 08(02): 93-96.

目的

通过观察小肠电刺激(IES)对肥胖大鼠进食模式的影响,初步探索小肠电刺激的减重机制。

方法

16只饮食诱导肥胖大鼠(DIO)被纳入试验。使用BioDAQ系统记录4组不同刺激时长(IES-0h,IES-1h,IES-6h和IES-12h)下DIO大鼠的进食模式。使用酶联免疫吸附法(ELISA)检测DIO大鼠餐后血清胰高血糖素样肽-1(GLP-1)及瘦素(Leptin)的表达水平。

结果

4组日均摄食量分别为(22.3±2.9)g、(21.9±3.7)g、(19.6±4.3)g和(17.5±5.1)g,呈现刺激时长依赖性下降趋势;大鼠日均进食次数无明显差异,但日均进食时间明显缩短。IES-12h组为(112.8±50.3)min对比对照组IES-0h组(147.9±52.1)min明显缩短(P<0.01)。DIO大鼠接受IES刺激1 h后餐后血清GLP-1对比对照组明显升高,而两组瘦素表达水平无差异。

结论

小肠电刺激通过减少DIO大鼠进食时间来减重,而GLP-1可能在其中发挥了作用。

Objective

Investigating the mechanism of intestinal electrical stimulation (IES) induced weight loss in obese rats by observing the changes of meal pattern.

Methods

Sixteen diet-induced obese rats (DIO) were used in the experiment. The BioDAQ system was used to record events of food intake. And the changes of meal pattern of obese rats with different stimulation duration (0 h, 1 h, 6 h and 12 h) were compared. Lastly, the levels of serum glucagon-like peptide-1 (GLP-1) and Leptin were tested by enzyme-linked immunosorbent assay (ELISA).

Results

The average daily food intake with four different stimulation duration were (22.3±2.9) g, (21.9±3.7) g, (19.6±4.3) g and (17.5±5.1) g, respectively. This was a stimulation time-dependent downward trend. There was no significant difference in the average daily feeding times of rats, but the eating duration were significantly shortened, and the average eating duration of 12hours stimulation (IES-12h) was significantly shorter than that of IES-0h, (112.8±50.3) min vs.(147.9±52.1) min. When DIO rats received one hour stimulation, the level of postprandial serum GLP-1 was significantly higher than that of sham-IES, but there was no difference on the level of Leptin between the two groups.

Conclusions

IES caused the weight loss of obese rats by reducing the eating duration, and GLP-1 may play a role in it.

表1 4组刺激时长下大鼠的进食模式情况
图1 4组不同刺激时长下平均每小时进食量
图2 IES组和对照组肥胖大鼠餐前和餐后1 h GLP-1表达水平
图3 IES组和对照组肥胖大鼠餐前和餐后1 h leptin表达水平
[1]
Wang Y, Wang L, Qu W. New national data show alarming increase in obesity andnoncommunicable chronic diseases in China [J]. Eur J Clin Nutr, 2017, 71: 149.
[2]
黄梦真,黄韦歆,熊逸波, 等. 病态肥胖患者行减重手术术后镇痛效果研究 [J/CD]. 中华肥胖与代谢病电子杂志, 2021, 7(2): 81-85.
[3]
Tak YJ, Lee SY. Long-term efficacy and safety of anti-obesity treatment: where dowe stand? [J]. Curr Obes Rep, 2021, 10(1):14-30.
[4]
Fan CJ, Chien HL, Weiss MJ, et al. Minimally invasive versus open surgery in the Medicare population: a comparison of post-operative and economic outcomes [J]. SurgEndosc, 2018, 32(9):3874-3880.
[5]
Li SY, Chen JD. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones [J]. Obes Surg, 2017, 27(1): 70-77.
[6]
Hasler WL. Intestinal electrical stimulation: a possible treatment for morbid obesity? [J]. Gastroenterology, 2005, 128(5):1523-1524.
[7]
Li SY, Zhu WJ, Zhang SJ, et al. Chronic intestinal electricalstimulation improves glucose intolerance and insulin resistance in diet-induced obesity rats [J]. Obesity, 2017, 25(6):1061-1068.
[8]
Li SY, Kim Y, Chen JD, et al. Intestinal electrical stimulation alters hypothalamicexpression of oxytocin and orexin and ameliorates diet-inducedobesity in rats [J]. Obes Surg, 2021, 31(4):1664-1672.
[9]
Liu S, Hou XH, Chen JD. Therapeutic potential of duodenal electrical stimulation for obesity: acute effects on gastric emptying and water intake [J]. Am JGastroenterol, 2005, 100(4):792-796.
[10]
Fonken LK, Workman JL, Walton JC, et al. Light at night increases body mass by shifting the time of food intake [J]. Proc Natl Acad Sci USA, 2010, 107(43):18664-18669.
[11]
Pathak V, Flatt PR, Irwin N. Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes [J]. Peptides, 2018, 100:229-235.
[12]
Seth M, Biswas R, Ganguly S. Leptin and obesity [J]. Physiol Int, 2020, 107(4): 455-468.
[13]
Grill HJ. A role for GLP-1 in treating hyperphagia and obesity[J].Endocrinol, 2020, 161(8):bqaa093.
[14]
Ye F, Liu Y, Li SY, et al. Hypoglycemic effects of intestinal electricalstimulation by enhancing nutrient-stimulated secretion of GLP-1 rats [J]. ObesSurg, 2018, 28(9): 2829-2835.
[15]
Schwartz A, Ort T, Kajekar R, et al. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release [J]. Physiol Meas, 2010, 31(9):1147-1159.
[16]
Hira T, Pinyo J, Hara H.What is GLP-1 really doing in obesity? [J]. TrendsEndocrinol Metab, 2020, 31(2):71-80.
[1] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[5] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[6] 玉素江·图荪托合提, 韩琦, 麦麦提艾力·麦麦提明, 黄旭东, 王浩, 克力木·阿不都热依木, 艾克拜尔·艾力. 腹腔镜袖状胃切除或联合食管裂孔疝修补术对肥胖症合并胃食管反流病的中期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 501-506.
[7] 刘见, 杨晓波, 何均健, 等. 应用电钩三孔法腹腔镜袖状胃切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(06): 363-364.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[10] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[11] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要