切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 243 -246. doi: 10.3877/cma.j.issn.2095-9605.2020.04.007

所属专题: 文献

青年专家论坛

胆汁酸途径可能介导胃旁路术改善糖代谢
武楠1, 阮小蛟2, 胡婉珍1, 甄潮辉1, 吕若雯2, 蔡华杰2, 陈一衡3, 胡明磊4, 朱恒梁1,()   
  1. 1. 518055 深圳,深圳大学总医院
    2. 325015 温州,温州医科大学附属第一医院
    3. 325012 温州,温州医科大学附属第二医院
    4. 32500 温州,温州市人民医院
  • 收稿日期:2020-11-01 出版日期:2020-11-30
  • 通信作者: 朱恒梁
  • 基金资助:
    深圳大学总医院科技人才助推计划(SUGH2019QD016)

Bile acid pathway may mediate gastric bypass to improve glucose metabolism

Nan Wu1, Xiaojiao Ruan2, Wanzhen Hu1   

  • Received:2020-11-01 Published:2020-11-30
引用本文:

武楠, 阮小蛟, 胡婉珍, 甄潮辉, 吕若雯, 蔡华杰, 陈一衡, 胡明磊, 朱恒梁. 胆汁酸途径可能介导胃旁路术改善糖代谢[J]. 中华肥胖与代谢病电子杂志, 2020, 06(04): 243-246.

Nan Wu, Xiaojiao Ruan, Wanzhen Hu. Bile acid pathway may mediate gastric bypass to improve glucose metabolism[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2020, 06(04): 243-246.

图1 "肠-脑-肝轴"学说和"肠胰岛轴"学说[11,12]
[1]
中华医学会糖尿病分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344.
[2]
Jiang F, Zhu H, Zheng X, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in Chinese patients with an average body mass index<24 kg/m2 [J]. Surg Obes Relat Dis, 2014, 10(4): 641-646.
[3]
Ruan X, Zhang W, Cai H, et al. Sleeve gastrectomy with duodenojejunal end-to-side anastomosis in the treatment of type 2 diabetes: the initial experiences in a Chinese population with a more than 4-year follow-up[J]. Surg Obes Relat Dis, 2017, 13(10): 1683-1691.
[4]
Rubino F, Nathan DM, Eckel RH, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations [J]. Diabetes Care. 2016, 39(6): 861-877.
[5]
Albaugh VL, Banan B, Antoun J, et al. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery [J]. Gastroenterology, 2019, 156(4): 1041-1051.
[6]
Angrisani L, Santonicola A, Iovino P, et al. Bariatric Surgery Worldwide 2013[J]. Obes Surg, 2015, 25(10): 1822-1832.
[7]
Lee JH, Nguyen QN, Le QA. Comparative effectiveness of 3 bariatric surgery procedures: Roux-en-Y gastric bypass, laparoscopic adjustable gastric band, and sleeve gastrectomy[J]. Surg Obes Relat Dis, 2016, 12(5): 997-1002.
[8]
朱恒梁, 蒋飞照, 郑晓风, 等. 2型糖尿病外科治疗临床路径及其探讨[J]. 温州医学院学报, 2012, 42(5): 424-431.
[9]
Müller T, Finan B, Bloom S, et al. Glucagon-like peptide 1 (GLP-1)[J]. Mol Metab, 2019, 30: 72-130.
[10]
Zhu H, Wang H, Zheng Z, et al. Ileal transposition rapidly improves glucose tolerance and gradually improves insulin resistance in non-obese type 2 diabetic rats[J]. Gastroenterol Rep, 2018, 6(4): 291-297.
[11]
朱恒梁,蒋飞照.胃肠道钠-葡萄糖共转运体1可能介导代谢减重手术改善血糖[J]. 中华肥胖与代谢病电子杂志, 2016, 2(2): 80-84.
[12]
Mithieux G. A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery [J]. Curr Diab Rep, 2012, 12(2): 167-171.
[13]
Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery [J]. Diabetes Metab, 2009, 35(6 Pt2):518-523.
[14]
Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes [J]. Ann Surg, 2006, 244(5):741-749.
[15]
Chiang J, Ferrell J. Bile Acids as Metabolic Regulators and Nutrient Sensors[J]. Annu Rev Nutr, 2019, 39: 175-200.
[16]
Düfer M, Hörth K, Wagner R, et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition[J]. Diabetes, 2012, 61(6): 1479-1489.
[17]
Werling M, Fandriks L, Olbers T, et al. Biliopancreatic diversion is associated with greater increases in energy expenditure than Roux-en-Y gastric bypass[J]. PLoS One, 2018, 13(4):e0194538.
[18]
Kohil R, Setchell KD, Kirby M, et al. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery[J]. Endocrinology, 2013, 154(7): 2341-2351.
[19]
Albaugh VL, Flynn CR, Cai S, et al. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin sensitizing secondary bile acids [J]. J Clin Endocrinol Metab, 2015, 100(9): E1225-1233.
[20]
Kaska L, Sledzinski T, Chomiczewska A, et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome [J]. World J Gastroenterol, 2016, 22(39): 8698-8719.
[21]
Kübeck R, Bonet-Ripoll C, Hoffmann C, et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice [J]. Mol Metab, 2016, 5(12):1162-1174.
[22]
Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism[J]. Obesity (Silver Spring, Md), 2009, 17(9):1671-1677.
[23]
Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals[J]. Diabetologia, 2018, 61(2):257-264.
[24]
Chavez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7):1679-1694e3.
[25]
Stofan M, Guo GL. Bile Acids and FXR: Novel Targets for Liver Diseases[J]. Front Med (Lausanne), 2020, 7: 544.
[26]
Kir S, Beddow SA, Samuel VT, et al. FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis[J]. Science, 2011, 331(6024): 1621-1624.
[27]
Escalera LMdl, Kyrou I, Vrbikova J, et al. Impact of gut hormone FGF-19 on type-2 diabetes and mitochondrial recovery in a prospective study of obese diabetic women undergoing bariatric surgery[J]. BMC Med, 2017, 15(34): 1-9.
[28]
Taoka H, Yokoyama Y, Morimoto K, et al. Role of bile acids in the regulation of the metabolic pathways[J]. World Journal of Diabetes, 2016, 7(13): 260-270.
[29]
Ji S, Liu Q, Zhang S, et al. FGF15 Activates Hippo Signaling to Suppress Bile Acid Metabolism and Liver Tumorigenesis[J]. Dev Cell, 2019, 48(4): 460-474.e469.
[30]
Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells[J]. Nat Commun, 2015, 6:7629.
[31]
Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism [J]. Hepatology, 2018, 68(4):1574-1588.
[32]
Parker HE, Wallis K, le Roux CW, et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion[J]. Br J Pharmacol, 2012, 165(2): 414-423.
[33]
Pols TW, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation[J]. J Hepatol, 2011, 54(6): 1263-1272.
[34]
Bayer CC, Jack TSA, Jacob WAN, et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(5): G574-584.
[35]
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J]. Biochem Biophys Res Commun, 2005, 329(1): 386-390.
[36]
Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J]. Nature, 2006, 439 (7075): 484-489.
[37]
Baggio LL, Ussher JR, McLean BA, et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice[J]. Mol Metab, 2017, 6(11):1339-1349.
[38]
Werling M, Olbers T, Fändriks L, et al. Increased Postprandial Energy Expenditure May Explain Superior Long Term Weight Loss after Roux-en-Y Gastric Bypass Compared to Vertical Banded Gastroplasty[J]. PLoS One, 2013, 8(4):e60280.
[1] 王友芳, 李兴超, 刘清敏, 刘德彬, 刘松伍, 郭冬冬, 车峰远. 应激性高血糖指数对经皮冠状动脉介入术后急性心肌梗死患者发生主要不良心脑血管事件的预测价值[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 124-129.
[2] 王招娣, 孙丽丽, 温佩婷, 吴坤. 成人肠外营养患者住院期间胰岛素添加管理的证据总结[J]. 中华危重症医学杂志(电子版), 2024, 17(01): 32-38.
[3] 李倩, 刘倩, 朱海玲, 倪娟, 任宝芹, 刘长云. 重组人生长激素治疗特发性矮小症患儿的疗效[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 346-352.
[4] 李莉, 马梅, 黄欣欣, 杨丹林, 潘勉. 妊娠期糖尿病早孕期相关影响因素及基于早孕期孕妇糖脂相关生化指标与人口学资料的4种机器学习算法构建妊娠期糖尿病预测模型的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 105-113.
[5] 毛建. 老年糖尿病患者社区获得性肺炎病原分布及空腹血糖、糖化血红蛋白的预测价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(06): 408-415.
[6] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[7] 何娅妮. 糖尿病肾脏病患者的血糖监测评估与降糖治疗[J]. 中华肾病研究电子杂志, 2024, 13(03): 180-180.
[8] 吕伟豪, 费晓炜, 武秀权, 何鑫, 郇宇, 吴霜, 豆雅楠, 费舟, 胡世颉. 重型颅脑损伤合并应激性高血糖患者血糖水平与预后的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 338-342.
[9] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[10] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[11] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[12] 袁蔡骏, 闻萍, 徐玲玲. 连续血糖监测在慢性肾脏病合并糖尿病患者中的应用研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(01): 79-82.
[13] 黄怡文, 宋青. 妊娠期高血糖诊治进展[J]. 中华产科急救电子杂志, 2023, 12(04): 217-222.
[14] 中国医师协会外科医师分会肥胖和糖尿病外科专家工作组. 减重手术相关贫血管理策略中国专家共识(2024版)[J]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 1-8.
[15] 董志勇, 王存川. 2022年《ASMBS/IFSO减重与代谢手术适应证指南》解读[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 225-230.
阅读次数
全文


摘要