切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2020, Vol. 06 ›› Issue (04) : 243 -246. doi: 10.3877/cma.j.issn.2095-9605.2020.04.007

所属专题: 文献

青年专家论坛

胆汁酸途径可能介导胃旁路术改善糖代谢
武楠1, 阮小蛟2, 胡婉珍1, 甄潮辉1, 吕若雯2, 蔡华杰2, 陈一衡3, 胡明磊4, 朱恒梁1,()   
  1. 1. 518055 深圳,深圳大学总医院
    2. 325015 温州,温州医科大学附属第一医院
    3. 325012 温州,温州医科大学附属第二医院
    4. 32500 温州,温州市人民医院
  • 收稿日期:2020-11-01 出版日期:2020-11-30
  • 通信作者: 朱恒梁
  • 基金资助:
    深圳大学总医院科技人才助推计划(SUGH2019QD016)

Bile acid pathway may mediate gastric bypass to improve glucose metabolism

Nan Wu1, Xiaojiao Ruan2, Wanzhen Hu1   

  • Received:2020-11-01 Published:2020-11-30
引用本文:

武楠, 阮小蛟, 胡婉珍, 甄潮辉, 吕若雯, 蔡华杰, 陈一衡, 胡明磊, 朱恒梁. 胆汁酸途径可能介导胃旁路术改善糖代谢[J]. 中华肥胖与代谢病电子杂志, 2020, 06(04): 243-246.

Nan Wu, Xiaojiao Ruan, Wanzhen Hu. Bile acid pathway may mediate gastric bypass to improve glucose metabolism[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2020, 06(04): 243-246.

图1 "肠-脑-肝轴"学说和"肠胰岛轴"学说[11,12]
[1]
中华医学会糖尿病分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344.
[2]
Jiang F, Zhu H, Zheng X, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in Chinese patients with an average body mass index<24 kg/m2 [J]. Surg Obes Relat Dis, 2014, 10(4): 641-646.
[3]
Ruan X, Zhang W, Cai H, et al. Sleeve gastrectomy with duodenojejunal end-to-side anastomosis in the treatment of type 2 diabetes: the initial experiences in a Chinese population with a more than 4-year follow-up[J]. Surg Obes Relat Dis, 2017, 13(10): 1683-1691.
[4]
Rubino F, Nathan DM, Eckel RH, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations [J]. Diabetes Care. 2016, 39(6): 861-877.
[5]
Albaugh VL, Banan B, Antoun J, et al. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery [J]. Gastroenterology, 2019, 156(4): 1041-1051.
[6]
Angrisani L, Santonicola A, Iovino P, et al. Bariatric Surgery Worldwide 2013[J]. Obes Surg, 2015, 25(10): 1822-1832.
[7]
Lee JH, Nguyen QN, Le QA. Comparative effectiveness of 3 bariatric surgery procedures: Roux-en-Y gastric bypass, laparoscopic adjustable gastric band, and sleeve gastrectomy[J]. Surg Obes Relat Dis, 2016, 12(5): 997-1002.
[8]
朱恒梁, 蒋飞照, 郑晓风, 等. 2型糖尿病外科治疗临床路径及其探讨[J]. 温州医学院学报, 2012, 42(5): 424-431.
[9]
Müller T, Finan B, Bloom S, et al. Glucagon-like peptide 1 (GLP-1)[J]. Mol Metab, 2019, 30: 72-130.
[10]
Zhu H, Wang H, Zheng Z, et al. Ileal transposition rapidly improves glucose tolerance and gradually improves insulin resistance in non-obese type 2 diabetic rats[J]. Gastroenterol Rep, 2018, 6(4): 291-297.
[11]
朱恒梁,蒋飞照.胃肠道钠-葡萄糖共转运体1可能介导代谢减重手术改善血糖[J]. 中华肥胖与代谢病电子杂志, 2016, 2(2): 80-84.
[12]
Mithieux G. A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery [J]. Curr Diab Rep, 2012, 12(2): 167-171.
[13]
Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery [J]. Diabetes Metab, 2009, 35(6 Pt2):518-523.
[14]
Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes [J]. Ann Surg, 2006, 244(5):741-749.
[15]
Chiang J, Ferrell J. Bile Acids as Metabolic Regulators and Nutrient Sensors[J]. Annu Rev Nutr, 2019, 39: 175-200.
[16]
Düfer M, Hörth K, Wagner R, et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition[J]. Diabetes, 2012, 61(6): 1479-1489.
[17]
Werling M, Fandriks L, Olbers T, et al. Biliopancreatic diversion is associated with greater increases in energy expenditure than Roux-en-Y gastric bypass[J]. PLoS One, 2018, 13(4):e0194538.
[18]
Kohil R, Setchell KD, Kirby M, et al. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery[J]. Endocrinology, 2013, 154(7): 2341-2351.
[19]
Albaugh VL, Flynn CR, Cai S, et al. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin sensitizing secondary bile acids [J]. J Clin Endocrinol Metab, 2015, 100(9): E1225-1233.
[20]
Kaska L, Sledzinski T, Chomiczewska A, et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome [J]. World J Gastroenterol, 2016, 22(39): 8698-8719.
[21]
Kübeck R, Bonet-Ripoll C, Hoffmann C, et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice [J]. Mol Metab, 2016, 5(12):1162-1174.
[22]
Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism[J]. Obesity (Silver Spring, Md), 2009, 17(9):1671-1677.
[23]
Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals[J]. Diabetologia, 2018, 61(2):257-264.
[24]
Chavez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7):1679-1694e3.
[25]
Stofan M, Guo GL. Bile Acids and FXR: Novel Targets for Liver Diseases[J]. Front Med (Lausanne), 2020, 7: 544.
[26]
Kir S, Beddow SA, Samuel VT, et al. FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis[J]. Science, 2011, 331(6024): 1621-1624.
[27]
Escalera LMdl, Kyrou I, Vrbikova J, et al. Impact of gut hormone FGF-19 on type-2 diabetes and mitochondrial recovery in a prospective study of obese diabetic women undergoing bariatric surgery[J]. BMC Med, 2017, 15(34): 1-9.
[28]
Taoka H, Yokoyama Y, Morimoto K, et al. Role of bile acids in the regulation of the metabolic pathways[J]. World Journal of Diabetes, 2016, 7(13): 260-270.
[29]
Ji S, Liu Q, Zhang S, et al. FGF15 Activates Hippo Signaling to Suppress Bile Acid Metabolism and Liver Tumorigenesis[J]. Dev Cell, 2019, 48(4): 460-474.e469.
[30]
Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells[J]. Nat Commun, 2015, 6:7629.
[31]
Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism [J]. Hepatology, 2018, 68(4):1574-1588.
[32]
Parker HE, Wallis K, le Roux CW, et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion[J]. Br J Pharmacol, 2012, 165(2): 414-423.
[33]
Pols TW, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation[J]. J Hepatol, 2011, 54(6): 1263-1272.
[34]
Bayer CC, Jack TSA, Jacob WAN, et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(5): G574-584.
[35]
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J]. Biochem Biophys Res Commun, 2005, 329(1): 386-390.
[36]
Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J]. Nature, 2006, 439 (7075): 484-489.
[37]
Baggio LL, Ussher JR, McLean BA, et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice[J]. Mol Metab, 2017, 6(11):1339-1349.
[38]
Werling M, Olbers T, Fändriks L, et al. Increased Postprandial Energy Expenditure May Explain Superior Long Term Weight Loss after Roux-en-Y Gastric Bypass Compared to Vertical Banded Gastroplasty[J]. PLoS One, 2013, 8(4):e60280.
[1] 邬龙海, 黄淼, 龚云辉, 喻云倩. 血清趋化因子在妊娠期糖尿病孕妇中的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 357-362.
[2] 喻诗洋, 杨大刚, 李永宁, 熊现秋, 李福堂, 王榕. 梗阻性黄疸中的加速康复外科:胆汁酸和肠道微生物的代谢相互作用[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 230-234.
[3] 张忠涛. 单吻合口胃旁路术[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 20-20.
[4] 彭聪, 罗晓英, 白阳秋, 江小柯, 张炳勇. 肠道菌群代谢产物与间充质干细胞相互作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 367-371.
[5] 陈家豪, 邝小红, 廖媛, 刘志欢, 陈忠城, 周文营. 血清学多参数Logistic回归模型对肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 615-618.
[6] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[7] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[8] 杜青瑶, 曹颖雯, 林健雄, 郝润, 王静敏, 徐锐权, 寇晓霞. 肠道菌群促进诺如病毒感染的机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 241-244,255.
[9] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
[10] 汪赓, 夏泽锋, 陶凯雄. 代谢手术在非肥胖型2型糖尿病中的治疗效果及研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 155-160.
[11] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
[12] 由伟, 魏卓奇, 陈文辉, 董志勇, 杨华, 王存川. 腹腔镜细长胃囊Roux-en-Y胃旁路手术治疗重度肥胖症一例报道[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 218-223.
[13] 秦晓光, 毛忠琦, 周晓庆, 谢尔凡, 吴国强, 张敏, 李威杰. 单吻合口胃旁路术对于肥胖及糖尿病患者心脑血管风险的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 120-125.
[14] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[15] 罗宁, 陈蓉. 非典型非酮症高血糖性偏侧舞蹈症三例[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 254-259.
阅读次数
全文


摘要