[1] |
Lancet T. Obesity and diabetes in 2017: a new year[J]. Lancet, 2017, 389(10064): 1.
|
[2] |
Khunti S, Davies MJ, Khunti K. Clinical inertia in the management of type 2 diabetes mellitus: a focused literature review[J]. British Journal of Diabetes, 2015, 15(2): 65.
|
[3] |
Hou X, Lu J, Weng J, Ji L, et al. Impact of waist circumference and body mass index on risk of cardiometabolic disorder and cardiovascular disease in Chinese adults: a national diabetes and metabolic disorders survey[J]. PloS one, 2013, 8(3): e57319.
|
[4] |
Jourdan T, Godlewski G, Kunos G. Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes[J]. Diabetes Obesity & Metabolism,2016, 18(6): 549-557.
|
[5] |
陈颖, 夏明锋, 李小英. 体脂分布与糖尿病风险[J]. 中国糖尿病杂志, 2017, 9(4): 218-220.
|
[6] |
Gilleron J, Bouget G, Ivanov S, et al. Rab4b Deficiency in T Cells Promotes Adipose Treg/Th17 Imbalance, Adipose Tissue Dysfunction, and Insulin Resistance[J]. Cell reports, 2018, 25(12): 3329-3341.
|
[7] |
Anna S, Jacob J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss[J]. Journal of Clinical Investigation, 2014, 124(10): 4473-4488.
|
[8] |
Bloemendaal LV, Veltman DJ, Kulve JST, et al. Brain Reward-System Activation in Response to Anticipation and Consumption of Palatable Food Is Altered by GLP-1 Receptor Activation in Humans (384-OR)[J]. Diabetes Obesity & Metabolism,2015, 17(9): 878-886.
|
[9] |
Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism[J]. Nature Reviews Endocrinology, 2019: 1.
|
[10] |
Sharma D, Verma S, Vaidya S, et al. Recent updates on GLP-1 agonists: Current advancements & challenges[J]. Biomedicine & pharmacotherapy Biomedecine & pharmacotherapie, 2018, 108: 952-962.
|
[11] |
Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions[J]. The lancet Diabetes & endocrinology, 2016, 4(6): 525-536.
|
[12] |
Aso Y, Ozeki N, Terasawa T, et al. Serum level of soluble CD26/dipeptidyl peptidase-4 (DPP-4) predicts the response to sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes controlled inadequately by metformin and/or sulfonylurea[J]. Translational Research, 2012, 159(1): 25-31.
|
[13] |
Tanaka S, Kanazawa I, Notsu M, et al. Visceral fat obesity increases serum DPP-4 levels in men with type 2 diabetes mellitus[J]. Diabetes Research & Clinical Practice, 2016, 116: 1-6.
|
[14] |
Sell H, Bluher M, Klöting N, et al. Adipose Dipeptidyl Peptidase-4 and Obesity[J]. Diabetes Care, 2013, 36(12): 4083-4090.
|
[15] |
Ah LS, Young Ree K, Eun JY, et al. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus[J]. Journal of Clinical Endocrinology & Metabolism,2013, 98(6): 2553-2561.
|
[16] |
Sesti G, Avogaro A, Belcastro S, et al. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus[J]. Acta diabetologica, 2019.
|
[17] |
Daryabor G, Kabelitz D, Kalantar K. An update on immune dysregulation in obesity-related insulin resistance[J]. Scandinavian journal of immunology, 2019, 89(4): e12747.
|
[18] |
Molofsky AB, Nussbaum JC, Hong-Erh L, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages[J]. Journal of Experimental Medicine, 2013, 210(3): 535-549.
|
[19] |
Nijhuis J, Rensen SS, Slaats Y, et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation[J]. Obesity, 2012, 17(11): 2014-2018.
|
[20] |
Saswata T, Young OD, Gautam B, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase[J]. Nature Medicine, 2012, 18(9): 1407.
|
[21] |
Li P, Liu S, Lu M, et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance[J]. Cell, 2016, 167(4): 973-984.e912.
|
[22] |
Sud N, Zhang H, Pan K, et al. Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance[J]. Journal of Nutritional Biochemistry, 2017, 43: 125.
|
[23] |
Lei W, Ning Z, Zun W, et al. MiR-499-5p Contributes to Hepatic Insulin Resistance by Suppressing PTEN[J]. Cellular Physiology & Biochemistry, 2015, 36(6): 2357-2365.
|
[24] |
Lei W, Ning Z, Wang Z, et al. Pseudogene PTENP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p[J]. Biochemistry, 2016, 81(7): 739-747.
|
[25] |
Fengyun W, Yi Y, Dan J, et al. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells[J]. Biochemical & Biophysical Research Communications, 2014, 445(2): 517-523.
|
[26] |
Awazawa M, Gabel P, Tsaousidou E, et al. A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle[J]. Nature Medicine, 2017, 23(12): 1466-1473.
|
[27] |
Madsbad S, Holst JJ. Guidelines: Surgical or medical therapy for patients with obesity and T2DM?[J]. Nature Reviews Endocrinology, 2016, 12(9): 500-502.
|
[28] |
Westerveld D, Yang D. Through Thick and Thin: Identifying Barriers to Bariatric Surgery, Weight Loss Maintenance, and Tailoring Obesity Treatment for the Future[J]. Surgery Research and Practice,2016, 2016(3): 1-7.
|
[29] |
张鹏, 郑成竹. 中国肥胖和2型糖尿病外科治疗指南解读[J]. 糖尿病天地(临床), 2016, 24(10): 18-20.
|
[30] |
ASMBS Clinical Issues Committee. Updated position statement on sleeve gastrectomy as a bariatric procedure[J]. surgery for obesity & related diseases official journal of the american society for bariatric surgery, 2012, 8(3): e21-e26.
|
[31] |
王存川, 董志勇. 精准肥胖外科[J/CD]. 中华肥胖与代谢病电子杂志, 2016, 2(1):1-6.
|