切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 161 -164. doi: 10.3877/cma.j.issn.2095-9605.2019.03.009

所属专题: 文献

综述

SGLT1在肥胖及其代谢性疾病中的作用及机制
何丽萍1, 许桂文1, 唐镱洲1, 冉玲1, 向宇1, 任亦星2,()   
  1. 1. 637000 南充,川北医学院附属医院胃肠外一科
    2. 637000 南充,川北医学院附属医院胃肠外一科;川北医学院肝胆胰肠疾病研究所
  • 收稿日期:2019-05-22 出版日期:2019-08-30
  • 通信作者: 任亦星
  • 基金资助:
    国家自然科学基金(81500396); 四川省教育厅科技成果转化重大培育项目(18CZ0023); 川北医学院博士基金(CBY15-QD001); 四川省卫计委科研项目(18PJ496); 南充市市校战略合作科技项目(18SHZ0307)

Role and mechanism of SGLT1 in obesity and its metabolic diseases

Liping He1, Guiwen Xu1, Yizhou Tang1   

  • Received:2019-05-22 Published:2019-08-30
引用本文:

何丽萍, 许桂文, 唐镱洲, 冉玲, 向宇, 任亦星. SGLT1在肥胖及其代谢性疾病中的作用及机制[J]. 中华肥胖与代谢病电子杂志, 2019, 05(03): 161-164.

Liping He, Guiwen Xu, Yizhou Tang. Role and mechanism of SGLT1 in obesity and its metabolic diseases[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(03): 161-164.

[1]
Danaei G, Lawes CM, Vander HS, et al. Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment[J]. Lancet, 2006, 368(9548): 1651-1659.
[2]
Zehendner CM, Librizzi L, Hedrich J, et al. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption[J]. PLoS One, 2013, 8(12): e82823.
[3]
Matsuoka T, Nishizaki T, Kisby GE. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells[J]. J Neurochem, 1998, 70(2): 772-777.
[4]
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters[J]. Physiol Rev, 2011, 91(2): 733-794.
[5]
Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study[J]. Diabetes Care, 2013, 36(8): 2154-2161.
[6]
孙静媛,马丽娜,高凌. 钠-葡萄糖共转运蛋白1和2的研究新进展[J]. 世界华人消化杂志, 2016, 24(25): 3673-3682.
[7]
Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters[J]. Physiol Rev, 1994, 74(4): 993-1026.
[8]
Yoshikawa T, Inoue R, Matsumoto M, et al. Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract[J]. Histochem Cell Biol, 2011, 135(2): 183-194.
[9]
Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans[J]. Diabetes, 2013, 62(10): 3324-3328.
[10]
Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members[J]. Diabetes Ther, 2010,1(2):57-92.
[11]
Zambrowicz B, Freiman J, Brown P M, et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial[J]. Clin Pharmacol Ther, 2012, 92(2): 158-169.
[12]
Nguyen NQ, Debreceni TL, Bambrick JE, et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia[J]. J Clin Endocrinol Metab, 2015, 100(3): 968-976.
[13]
Zambrowicz B, Ding ZM, Ogbaa I, et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes[J]. Clin Ther, 2013, 35(3): 273-285.
[14]
Miyamoto K, Hase K, Takagi T, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars[J]. Biochem J, 1993, 295 (Pt1): 211-215.
[15]
Stenlof K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise[J]. Diabetes Obes Metab, 2013,15(4): 372-382.
[16]
Powell DR, DaCosta CM, Gay J, et al. Improved glycemic control in mice lacking Sglt1 and Sglt2[J]. Am J Physiol Endocrinol Metab, 2013, 304(2): E117-E130.
[17]
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371.
[18]
Wu T, Zhao BR, Bound MJ, et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans[J]. Am J Clin Nutr, 2012, 95(1): 78-83.
[19]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule[J]. J Am Soc Nephrol, 2011, 22(1): 104-112.
[20]
Zambrowicz B, Lapuerta P, Strumph P, et al. LX4211 therapy reduces postprandial glucose levels in patients with type 2 diabetes mellitus and renal impairment despite low urinary glucose excretion[J]. Clin Ther, 2015, 37(1): 71-82.
[21]
Kim M, Platt MJ, Shibasaki T, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure[J]. Nat Med, 2013, 19(5): 567-575.
[22]
Kanwal A, Singh SP, Grover P, et al. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2[J]. Anal Biochem, 2012, 429(1): 70-75.
[23]
Kashiwagi Y, Nagoshi T, Yoshino T, et al. Expression of SGLT1 in Human Hearts and Impairment of Cardiac Glucose Uptake by Phlorizin during Ischemia-Reperfusion Injury in Mice[J]. PLoS One, 2015, 10(6): e130605.
[24]
Young RL, Chia B, Isaacs NJ, et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes[J]. Diabetes, 2013, 62(10): 3532-3541.
[25]
Gropler RJ. Recent advances in metabolic imaging[J]. J Nucl Cardiol, 2013, 20(6): 1147-1172.
[26]
Tatarkiewicz K, Polizzi C, Villescaz C, et al. Combined antidiabetic benefits of exenatide and dapagliflozin in diabetic mice[J]. Diabetes Obes Metab, 2014,16(4): 376-380.
[27]
Ramratnam M, Sharma RK, D'Auria S, et al. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice[J]. J Am Heart Assoc, 2014, 3(4): e889.
[28]
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies[J]. Prog Neurobiol, 2013, 108: 21-43.
[29]
Doi Y, Ninomiya T, Hata J, et al. Impact of glucose tolerance status on development of ischemic stroke and coronary heart disease in a general Japanese population: the Hisayama study[J]. Stroke, 2010, 41(2): 203-209.
[30]
Ogbera AO, Oshinaike OO, Dada O, et al. Glucose and lipid assessment in patients with acute stroke[J]. Int Arch Med, 2014, 7(1): 45.
[31]
Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview[J]. Stroke, 2001, 32(10): 2426-2432.
[32]
Yamazaki Y, Harada S, Tokuyama S. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia[J]. Neurosci Lett, 2015, 604: 134-139.
[33]
Yamazaki Y, Harada S, Wada T, et al. Sodium influx through cerebral sodium-glucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage[J]. Eur J Pharmacol, 2017, 799: 103-110.
[34]
Huber SM, Misovic M, Mayer C, et al. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells[J]. Radiother Oncol, 2012, 103(3): 373-379.
[35]
Wu P, He P, Zhao S, et al. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats[J]. Molecules, 2014, 19(8): 12559-12576.
[36]
Scafoglio C, Hirayama BA, Kepe V, et al. Functional expression of sodium-glucose transporters in cancer[J]. Proc Natl Acad Sci U S A, 2015, 112(30): E4111-E4119.
[37]
Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance[J]. Cell Metab, 2010, 11(6): 467-478.
[38]
Liu HY, Han J, Cao SY, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin[J]. J Biol Chem, 2009, 284(45): 31484-31492.
[39]
Maleckas A, Venclauskas L, Wallenius V, et al. Surgery in the treatment of type 2 diabetes mellitus[J]. Scand J Surg, 2015, 104(1): 40-47.
[40]
Nguyen NQ, Debreceni TL, Bambrick JE, et al. Upregulation of intestinal glucose transporters after Roux-en-Y gastric bypass to prevent carbohydrate malabsorption[J]. Obesity (Silver Spring), 2014, 22(10): 2164-2171.
[41]
Stearns AT, Balakrishnan A, Tavakkolizadeh A. Impact of Roux-en-Y gastric bypass surgery on rat intestinal glucose transport[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297(5): G950-G957.
[42]
Roder PV, Geillinger KE, Zietek TS, et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J]. PLoS One, 2014, 9(2): e89977.
[43]
Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes[J]. Ann Surg, 2013, 258(1): 89-97.
[44]
Jurowich CF, Otto C, Rikkala PR, et al. Ileal Interposition in Rats with Experimental Type 2 Like Diabetes Improves Glycemic Control Independently of Glucose Absorption[J]. J Diabetes Res, 2015, 2015: 490365.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[3] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 谢芬, 陈洁, 张媛媛, 刘茜, 胡芬, 李恭驰, 李炳辉, 金环. 移动健康管理模式在糖尿病足管理中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 335-340.
[6] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[9] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[10] 孙顗淼, 张颖. 糖尿病患者急性脑梗死取栓术后发生对比剂肾病的影响因素及预测模型建立[J]. 中华肾病研究电子杂志, 2024, 13(04): 188-194.
[11] 何娅妮. 糖尿病肾脏病患者的血糖监测评估与降糖治疗[J]. 中华肾病研究电子杂志, 2024, 13(03): 180-180.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
[14] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要