[1] |
Danaei G, Lawes CM, Vander HS, et al. Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment[J]. Lancet, 2006, 368(9548): 1651-1659.
|
[2] |
Zehendner CM, Librizzi L, Hedrich J, et al. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption[J]. PLoS One, 2013, 8(12): e82823.
|
[3] |
Matsuoka T, Nishizaki T, Kisby GE. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells[J]. J Neurochem, 1998, 70(2): 772-777.
|
[4] |
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters[J]. Physiol Rev, 2011, 91(2): 733-794.
|
[5] |
Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study[J]. Diabetes Care, 2013, 36(8): 2154-2161.
|
[6] |
孙静媛,马丽娜,高凌. 钠-葡萄糖共转运蛋白1和2的研究新进展[J]. 世界华人消化杂志, 2016, 24(25): 3673-3682.
|
[7] |
Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters[J]. Physiol Rev, 1994, 74(4): 993-1026.
|
[8] |
Yoshikawa T, Inoue R, Matsumoto M, et al. Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract[J]. Histochem Cell Biol, 2011, 135(2): 183-194.
|
[9] |
Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans[J]. Diabetes, 2013, 62(10): 3324-3328.
|
[10] |
Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members[J]. Diabetes Ther, 2010,1(2):57-92.
|
[11] |
Zambrowicz B, Freiman J, Brown P M, et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial[J]. Clin Pharmacol Ther, 2012, 92(2): 158-169.
|
[12] |
Nguyen NQ, Debreceni TL, Bambrick JE, et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia[J]. J Clin Endocrinol Metab, 2015, 100(3): 968-976.
|
[13] |
Zambrowicz B, Ding ZM, Ogbaa I, et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes[J]. Clin Ther, 2013, 35(3): 273-285.
|
[14] |
Miyamoto K, Hase K, Takagi T, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars[J]. Biochem J, 1993, 295 (Pt1): 211-215.
|
[15] |
Stenlof K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise[J]. Diabetes Obes Metab, 2013,15(4): 372-382.
|
[16] |
Powell DR, DaCosta CM, Gay J, et al. Improved glycemic control in mice lacking Sglt1 and Sglt2[J]. Am J Physiol Endocrinol Metab, 2013, 304(2): E117-E130.
|
[17] |
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371.
|
[18] |
Wu T, Zhao BR, Bound MJ, et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans[J]. Am J Clin Nutr, 2012, 95(1): 78-83.
|
[19] |
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule[J]. J Am Soc Nephrol, 2011, 22(1): 104-112.
|
[20] |
Zambrowicz B, Lapuerta P, Strumph P, et al. LX4211 therapy reduces postprandial glucose levels in patients with type 2 diabetes mellitus and renal impairment despite low urinary glucose excretion[J]. Clin Ther, 2015, 37(1): 71-82.
|
[21] |
Kim M, Platt MJ, Shibasaki T, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure[J]. Nat Med, 2013, 19(5): 567-575.
|
[22] |
Kanwal A, Singh SP, Grover P, et al. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2[J]. Anal Biochem, 2012, 429(1): 70-75.
|
[23] |
Kashiwagi Y, Nagoshi T, Yoshino T, et al. Expression of SGLT1 in Human Hearts and Impairment of Cardiac Glucose Uptake by Phlorizin during Ischemia-Reperfusion Injury in Mice[J]. PLoS One, 2015, 10(6): e130605.
|
[24] |
Young RL, Chia B, Isaacs NJ, et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes[J]. Diabetes, 2013, 62(10): 3532-3541.
|
[25] |
Gropler RJ. Recent advances in metabolic imaging[J]. J Nucl Cardiol, 2013, 20(6): 1147-1172.
|
[26] |
Tatarkiewicz K, Polizzi C, Villescaz C, et al. Combined antidiabetic benefits of exenatide and dapagliflozin in diabetic mice[J]. Diabetes Obes Metab, 2014,16(4): 376-380.
|
[27] |
Ramratnam M, Sharma RK, D'Auria S, et al. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice[J]. J Am Heart Assoc, 2014, 3(4): e889.
|
[28] |
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies[J]. Prog Neurobiol, 2013, 108: 21-43.
|
[29] |
Doi Y, Ninomiya T, Hata J, et al. Impact of glucose tolerance status on development of ischemic stroke and coronary heart disease in a general Japanese population: the Hisayama study[J]. Stroke, 2010, 41(2): 203-209.
|
[30] |
Ogbera AO, Oshinaike OO, Dada O, et al. Glucose and lipid assessment in patients with acute stroke[J]. Int Arch Med, 2014, 7(1): 45.
|
[31] |
Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview[J]. Stroke, 2001, 32(10): 2426-2432.
|
[32] |
Yamazaki Y, Harada S, Tokuyama S. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia[J]. Neurosci Lett, 2015, 604: 134-139.
|
[33] |
Yamazaki Y, Harada S, Wada T, et al. Sodium influx through cerebral sodium-glucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage[J]. Eur J Pharmacol, 2017, 799: 103-110.
|
[34] |
Huber SM, Misovic M, Mayer C, et al. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells[J]. Radiother Oncol, 2012, 103(3): 373-379.
|
[35] |
Wu P, He P, Zhao S, et al. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats[J]. Molecules, 2014, 19(8): 12559-12576.
|
[36] |
Scafoglio C, Hirayama BA, Kepe V, et al. Functional expression of sodium-glucose transporters in cancer[J]. Proc Natl Acad Sci U S A, 2015, 112(30): E4111-E4119.
|
[37] |
Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance[J]. Cell Metab, 2010, 11(6): 467-478.
|
[38] |
Liu HY, Han J, Cao SY, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin[J]. J Biol Chem, 2009, 284(45): 31484-31492.
|
[39] |
Maleckas A, Venclauskas L, Wallenius V, et al. Surgery in the treatment of type 2 diabetes mellitus[J]. Scand J Surg, 2015, 104(1): 40-47.
|
[40] |
Nguyen NQ, Debreceni TL, Bambrick JE, et al. Upregulation of intestinal glucose transporters after Roux-en-Y gastric bypass to prevent carbohydrate malabsorption[J]. Obesity (Silver Spring), 2014, 22(10): 2164-2171.
|
[41] |
Stearns AT, Balakrishnan A, Tavakkolizadeh A. Impact of Roux-en-Y gastric bypass surgery on rat intestinal glucose transport[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297(5): G950-G957.
|
[42] |
Roder PV, Geillinger KE, Zietek TS, et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J]. PLoS One, 2014, 9(2): e89977.
|
[43] |
Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes[J]. Ann Surg, 2013, 258(1): 89-97.
|
[44] |
Jurowich CF, Otto C, Rikkala PR, et al. Ileal Interposition in Rats with Experimental Type 2 Like Diabetes Improves Glycemic Control Independently of Glucose Absorption[J]. J Diabetes Res, 2015, 2015: 490365.
|