切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2019, Vol. 05 ›› Issue (03) : 161 -164. doi: 10.3877/cma.j.issn.2095-9605.2019.03.009

所属专题: 文献

综述

SGLT1在肥胖及其代谢性疾病中的作用及机制
何丽萍1, 许桂文1, 唐镱洲1, 冉玲1, 向宇1, 任亦星2,()   
  1. 1. 637000 南充,川北医学院附属医院胃肠外一科
    2. 637000 南充,川北医学院附属医院胃肠外一科;川北医学院肝胆胰肠疾病研究所
  • 收稿日期:2019-05-22 出版日期:2019-08-30
  • 通信作者: 任亦星
  • 基金资助:
    国家自然科学基金(81500396); 四川省教育厅科技成果转化重大培育项目(18CZ0023); 川北医学院博士基金(CBY15-QD001); 四川省卫计委科研项目(18PJ496); 南充市市校战略合作科技项目(18SHZ0307)

Role and mechanism of SGLT1 in obesity and its metabolic diseases

Liping He1, Guiwen Xu1, Yizhou Tang1   

  • Received:2019-05-22 Published:2019-08-30
引用本文:

何丽萍, 许桂文, 唐镱洲, 冉玲, 向宇, 任亦星. SGLT1在肥胖及其代谢性疾病中的作用及机制[J]. 中华肥胖与代谢病电子杂志, 2019, 05(03): 161-164.

Liping He, Guiwen Xu, Yizhou Tang. Role and mechanism of SGLT1 in obesity and its metabolic diseases[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2019, 05(03): 161-164.

[1]
Danaei G, Lawes CM, Vander HS, et al. Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment[J]. Lancet, 2006, 368(9548): 1651-1659.
[2]
Zehendner CM, Librizzi L, Hedrich J, et al. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption[J]. PLoS One, 2013, 8(12): e82823.
[3]
Matsuoka T, Nishizaki T, Kisby GE. Na+-dependent and phlorizin-inhibitable transport of glucose and cycasin in brain endothelial cells[J]. J Neurochem, 1998, 70(2): 772-777.
[4]
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters[J]. Physiol Rev, 2011, 91(2): 733-794.
[5]
Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study[J]. Diabetes Care, 2013, 36(8): 2154-2161.
[6]
孙静媛,马丽娜,高凌. 钠-葡萄糖共转运蛋白1和2的研究新进展[J]. 世界华人消化杂志, 2016, 24(25): 3673-3682.
[7]
Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters[J]. Physiol Rev, 1994, 74(4): 993-1026.
[8]
Yoshikawa T, Inoue R, Matsumoto M, et al. Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract[J]. Histochem Cell Biol, 2011, 135(2): 183-194.
[9]
Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans[J]. Diabetes, 2013, 62(10): 3324-3328.
[10]
Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members[J]. Diabetes Ther, 2010,1(2):57-92.
[11]
Zambrowicz B, Freiman J, Brown P M, et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial[J]. Clin Pharmacol Ther, 2012, 92(2): 158-169.
[12]
Nguyen NQ, Debreceni TL, Bambrick JE, et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia[J]. J Clin Endocrinol Metab, 2015, 100(3): 968-976.
[13]
Zambrowicz B, Ding ZM, Ogbaa I, et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes[J]. Clin Ther, 2013, 35(3): 273-285.
[14]
Miyamoto K, Hase K, Takagi T, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars[J]. Biochem J, 1993, 295 (Pt1): 211-215.
[15]
Stenlof K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise[J]. Diabetes Obes Metab, 2013,15(4): 372-382.
[16]
Powell DR, DaCosta CM, Gay J, et al. Improved glycemic control in mice lacking Sglt1 and Sglt2[J]. Am J Physiol Endocrinol Metab, 2013, 304(2): E117-E130.
[17]
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371.
[18]
Wu T, Zhao BR, Bound MJ, et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans[J]. Am J Clin Nutr, 2012, 95(1): 78-83.
[19]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule[J]. J Am Soc Nephrol, 2011, 22(1): 104-112.
[20]
Zambrowicz B, Lapuerta P, Strumph P, et al. LX4211 therapy reduces postprandial glucose levels in patients with type 2 diabetes mellitus and renal impairment despite low urinary glucose excretion[J]. Clin Ther, 2015, 37(1): 71-82.
[21]
Kim M, Platt MJ, Shibasaki T, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure[J]. Nat Med, 2013, 19(5): 567-575.
[22]
Kanwal A, Singh SP, Grover P, et al. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2[J]. Anal Biochem, 2012, 429(1): 70-75.
[23]
Kashiwagi Y, Nagoshi T, Yoshino T, et al. Expression of SGLT1 in Human Hearts and Impairment of Cardiac Glucose Uptake by Phlorizin during Ischemia-Reperfusion Injury in Mice[J]. PLoS One, 2015, 10(6): e130605.
[24]
Young RL, Chia B, Isaacs NJ, et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes[J]. Diabetes, 2013, 62(10): 3532-3541.
[25]
Gropler RJ. Recent advances in metabolic imaging[J]. J Nucl Cardiol, 2013, 20(6): 1147-1172.
[26]
Tatarkiewicz K, Polizzi C, Villescaz C, et al. Combined antidiabetic benefits of exenatide and dapagliflozin in diabetic mice[J]. Diabetes Obes Metab, 2014,16(4): 376-380.
[27]
Ramratnam M, Sharma RK, D'Auria S, et al. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice[J]. J Am Heart Assoc, 2014, 3(4): e889.
[28]
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies[J]. Prog Neurobiol, 2013, 108: 21-43.
[29]
Doi Y, Ninomiya T, Hata J, et al. Impact of glucose tolerance status on development of ischemic stroke and coronary heart disease in a general Japanese population: the Hisayama study[J]. Stroke, 2010, 41(2): 203-209.
[30]
Ogbera AO, Oshinaike OO, Dada O, et al. Glucose and lipid assessment in patients with acute stroke[J]. Int Arch Med, 2014, 7(1): 45.
[31]
Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview[J]. Stroke, 2001, 32(10): 2426-2432.
[32]
Yamazaki Y, Harada S, Tokuyama S. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia[J]. Neurosci Lett, 2015, 604: 134-139.
[33]
Yamazaki Y, Harada S, Wada T, et al. Sodium influx through cerebral sodium-glucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage[J]. Eur J Pharmacol, 2017, 799: 103-110.
[34]
Huber SM, Misovic M, Mayer C, et al. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells[J]. Radiother Oncol, 2012, 103(3): 373-379.
[35]
Wu P, He P, Zhao S, et al. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats[J]. Molecules, 2014, 19(8): 12559-12576.
[36]
Scafoglio C, Hirayama BA, Kepe V, et al. Functional expression of sodium-glucose transporters in cancer[J]. Proc Natl Acad Sci U S A, 2015, 112(30): E4111-E4119.
[37]
Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance[J]. Cell Metab, 2010, 11(6): 467-478.
[38]
Liu HY, Han J, Cao SY, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin[J]. J Biol Chem, 2009, 284(45): 31484-31492.
[39]
Maleckas A, Venclauskas L, Wallenius V, et al. Surgery in the treatment of type 2 diabetes mellitus[J]. Scand J Surg, 2015, 104(1): 40-47.
[40]
Nguyen NQ, Debreceni TL, Bambrick JE, et al. Upregulation of intestinal glucose transporters after Roux-en-Y gastric bypass to prevent carbohydrate malabsorption[J]. Obesity (Silver Spring), 2014, 22(10): 2164-2171.
[41]
Stearns AT, Balakrishnan A, Tavakkolizadeh A. Impact of Roux-en-Y gastric bypass surgery on rat intestinal glucose transport[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297(5): G950-G957.
[42]
Roder PV, Geillinger KE, Zietek TS, et al. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J]. PLoS One, 2014, 9(2): e89977.
[43]
Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes[J]. Ann Surg, 2013, 258(1): 89-97.
[44]
Jurowich CF, Otto C, Rikkala PR, et al. Ileal Interposition in Rats with Experimental Type 2 Like Diabetes Improves Glycemic Control Independently of Glucose Absorption[J]. J Diabetes Res, 2015, 2015: 490365.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[11] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要