切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 42 -45. doi: 10.3877/cma.j.issn.2095-9605.2017.01.009

所属专题: 文献

综述

糖尿病与周期基因研究进展
沈奇伟1, 张旭1, 姚琪远1,()   
  1. 1. 200040 上海,复旦大学附属华山医院普外科
  • 收稿日期:2017-01-10 出版日期:2017-02-28
  • 通信作者: 姚琪远

Research progress of diabetes and cyclin genes

Qiwei Shen1, Xu Zhang1, Qiyuan Yao1()   

  • Received:2017-01-10 Published:2017-02-28
  • Corresponding author: Qiyuan Yao
引用本文:

沈奇伟, 张旭, 姚琪远. 糖尿病与周期基因研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2017, 03(01): 42-45.

Qiwei Shen, Xu Zhang, Qiyuan Yao. Research progress of diabetes and cyclin genes[J/OL]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2017, 03(01): 42-45.

[1]
Ferrell JM, Chiang JY. Circadian rhythms in liver metabolism and disease[J]. Acta Pharm Sin B, 2015, 5(2):113-122.
[2]
Shimba S, Ogawa T, Hitosugi S, et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation[J]. PLoS One, 2011, 6(9):e25231.
[3]
Guillaumond F, Dardente H, Giguère V, et al. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors[J]. J Biol Rhythms, 2005, 20(5):391-403.
[4]
Zhou B, Zhang Y, Zhang F, et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1[J]. Hepatology, 2014, 59(6):2196-2206.
[5]
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation[J]. Cell, 2008, 134(2):317-328.
[6]
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control[J]. Cell, 2008, 134(2):329-340.
[7]
Anafi RC, Lee Y, Sato TK, et al. Machine learning helps identify CHRONO as a circadian clock component[J]. PLoS Biol, 2014, 12(4):e1001840.
[8]
Bhargava A, Herzel H, Ananthasubramaniam B. Mining for novel candidate clock genes in the circadian regulatory network[J]. BMC Syst Biol, 2015(9):78.
[9]
Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock[J]. Handb Exp Pharmacol, 2013(217):3-27.
[10]
Bruce KD, Szczepankiewicz D, Sihota KK, et al. Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH[J]. Biochim Biophys Acta, 2016, 1861(7):584-593.
[11]
Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus[J]. Genes Cells, 2001, 6(3):269-278.
[12]
Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice[J]. Cell Metab, 2007, 6(5):414-421.
[13]
Iwamoto A, Kawai M, Furuse M, et al. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice[J]. Chronobiol Int, 2014, 31(2):189-198.
[14]
Yang X, Zhang YK, Esterly N, et al. Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock[J]. J Biochem, 2009, 145(5):609-623.
[15]
Gómez-Abellán P, Madrid JA, Luján JA, et al. Sexual dimorphism in clock genes expression in human adipose tissue[J]. Obes Surg, 2012, 22(1):105-112.
[16]
Wang D, Chen S, Liu M, et al. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver[J]. Chronobiol Int, 2015, 32(5):615-626.
[17]
Kalsbeek A, Yi CX, La Fleur SE, et al. The hypothalamic clock and its control of glucose homeostasis[J]. Trends Endocrinol Metab, 2010, 21(7):402-410.
[18]
Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people[J]. Occup Environ Med, 2001, 58(11):747-752.
[19]
la Fleur SE, Kalsbeek A, Wortel J, et al. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus[J]. Diabetes, 2001, 50(6):1237-1243.
[20]
Yang SC, Tseng HL, Shieh KR. Circadian-clock system in mouse liver affected by insulin resistance[J]. Chronobiol Int, 2013, 30(6):796-810.
[21]
Rudic RD, McNamara P, Curtis AM, et al. Two essential components of the circadian clock, are involved in glucose homeostasis[J]. PLoS Biol, 2004, 2(11):e377.
[22]
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A, 2008, 105(39):15172-15177.
[23]
Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B[J]. Cell Metab, 2007, 6(4):307-319.
[24]
Saini C, Petrenko V, Pulimeno P, et al. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells[J]. Diabetes Obes Metab, 2016, 18(4):355-365.
[25]
Rakshit K, Hsu TW, Matveyenko AV. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice[J]. Diabetologia, 2016, 59(4):734-743.
[26]
Lee J, Moulik M, Fang Z, et al. Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice[J]. Mol Cell Biol, 2013, 33(11):2327-2338.
[27]
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes[J]. Diabetes Care, 2009, 32(Suppl 2):S157-S163.
[28]
Liu J, Zhou B, Yan M, et al. CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice[J]. Endocrinology, 2016,157(6):2259-2269.
[29]
Dyar KA, Ciciliot S, Wright LE, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock[J]. Mol Metab, 2014, 3(1):29-41.
[30]
Liu Y, Chewchuk S, Lavigne C, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment[J]. Am J Physiol Endocrinol Metab, 2009, 297(3):E657-E664.
[31]
Bouzakri K, Plomgaard P, Berney T, et al. Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle[J]. Diabetes, 2011, 60(4):1111-1121.
[32]
Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J]. Nat Med, 2011, 17(11):1481-1489.
[33]
Perrin L, Loizides-Mangold U, Skarupelova S, et al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion[J]. Mol Metab, 2015, 4(11):834-845.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[5] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[8] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[13] 张鹏飞, 王雯. 肌肉因子对骨骼调控作用的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 372-378.
[14] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[15] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?