切换至 "中华医学电子期刊资源库"

中华肥胖与代谢病电子杂志 ›› 2017, Vol. 03 ›› Issue (01) : 42 -45. doi: 10.3877/cma.j.issn.2095-9605.2017.01.009

所属专题: 文献

综述

糖尿病与周期基因研究进展
沈奇伟1, 张旭1, 姚琪远1,()   
  1. 1. 200040 上海,复旦大学附属华山医院普外科
  • 收稿日期:2017-01-10 出版日期:2017-02-28
  • 通信作者: 姚琪远

Research progress of diabetes and cyclin genes

Qiwei Shen1, Xu Zhang1, Qiyuan Yao1()   

  • Received:2017-01-10 Published:2017-02-28
  • Corresponding author: Qiyuan Yao
引用本文:

沈奇伟, 张旭, 姚琪远. 糖尿病与周期基因研究进展[J]. 中华肥胖与代谢病电子杂志, 2017, 03(01): 42-45.

Qiwei Shen, Xu Zhang, Qiyuan Yao. Research progress of diabetes and cyclin genes[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2017, 03(01): 42-45.

[1]
Ferrell JM, Chiang JY. Circadian rhythms in liver metabolism and disease[J]. Acta Pharm Sin B, 2015, 5(2):113-122.
[2]
Shimba S, Ogawa T, Hitosugi S, et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation[J]. PLoS One, 2011, 6(9):e25231.
[3]
Guillaumond F, Dardente H, Giguère V, et al. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors[J]. J Biol Rhythms, 2005, 20(5):391-403.
[4]
Zhou B, Zhang Y, Zhang F, et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1[J]. Hepatology, 2014, 59(6):2196-2206.
[5]
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation[J]. Cell, 2008, 134(2):317-328.
[6]
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control[J]. Cell, 2008, 134(2):329-340.
[7]
Anafi RC, Lee Y, Sato TK, et al. Machine learning helps identify CHRONO as a circadian clock component[J]. PLoS Biol, 2014, 12(4):e1001840.
[8]
Bhargava A, Herzel H, Ananthasubramaniam B. Mining for novel candidate clock genes in the circadian regulatory network[J]. BMC Syst Biol, 2015(9):78.
[9]
Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock[J]. Handb Exp Pharmacol, 2013(217):3-27.
[10]
Bruce KD, Szczepankiewicz D, Sihota KK, et al. Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH[J]. Biochim Biophys Acta, 2016, 1861(7):584-593.
[11]
Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus[J]. Genes Cells, 2001, 6(3):269-278.
[12]
Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice[J]. Cell Metab, 2007, 6(5):414-421.
[13]
Iwamoto A, Kawai M, Furuse M, et al. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice[J]. Chronobiol Int, 2014, 31(2):189-198.
[14]
Yang X, Zhang YK, Esterly N, et al. Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock[J]. J Biochem, 2009, 145(5):609-623.
[15]
Gómez-Abellán P, Madrid JA, Luján JA, et al. Sexual dimorphism in clock genes expression in human adipose tissue[J]. Obes Surg, 2012, 22(1):105-112.
[16]
Wang D, Chen S, Liu M, et al. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver[J]. Chronobiol Int, 2015, 32(5):615-626.
[17]
Kalsbeek A, Yi CX, La Fleur SE, et al. The hypothalamic clock and its control of glucose homeostasis[J]. Trends Endocrinol Metab, 2010, 21(7):402-410.
[18]
Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people[J]. Occup Environ Med, 2001, 58(11):747-752.
[19]
la Fleur SE, Kalsbeek A, Wortel J, et al. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus[J]. Diabetes, 2001, 50(6):1237-1243.
[20]
Yang SC, Tseng HL, Shieh KR. Circadian-clock system in mouse liver affected by insulin resistance[J]. Chronobiol Int, 2013, 30(6):796-810.
[21]
Rudic RD, McNamara P, Curtis AM, et al. Two essential components of the circadian clock, are involved in glucose homeostasis[J]. PLoS Biol, 2004, 2(11):e377.
[22]
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A, 2008, 105(39):15172-15177.
[23]
Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B[J]. Cell Metab, 2007, 6(4):307-319.
[24]
Saini C, Petrenko V, Pulimeno P, et al. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells[J]. Diabetes Obes Metab, 2016, 18(4):355-365.
[25]
Rakshit K, Hsu TW, Matveyenko AV. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice[J]. Diabetologia, 2016, 59(4):734-743.
[26]
Lee J, Moulik M, Fang Z, et al. Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice[J]. Mol Cell Biol, 2013, 33(11):2327-2338.
[27]
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes[J]. Diabetes Care, 2009, 32(Suppl 2):S157-S163.
[28]
Liu J, Zhou B, Yan M, et al. CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice[J]. Endocrinology, 2016,157(6):2259-2269.
[29]
Dyar KA, Ciciliot S, Wright LE, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock[J]. Mol Metab, 2014, 3(1):29-41.
[30]
Liu Y, Chewchuk S, Lavigne C, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment[J]. Am J Physiol Endocrinol Metab, 2009, 297(3):E657-E664.
[31]
Bouzakri K, Plomgaard P, Berney T, et al. Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle[J]. Diabetes, 2011, 60(4):1111-1121.
[32]
Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J]. Nat Med, 2011, 17(11):1481-1489.
[33]
Perrin L, Loizides-Mangold U, Skarupelova S, et al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion[J]. Mol Metab, 2015, 4(11):834-845.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[3] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[4] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[5] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[6] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[7] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[8] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[9] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[10] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[11] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要